forked from kaipengm2/DiffKendall
-
Notifications
You must be signed in to change notification settings - Fork 0
/
meta.py
170 lines (162 loc) · 7 KB
/
meta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import argparse
import torch.nn.functional as F
from torch.utils.data import DataLoader
import torch.nn as nn
from Models.dataloader.samplers import CategoriesSampler
from Models.utils import *
from Models.models.DiffKendall import Kendall
from torch.utils.tensorboard import SummaryWriter
import tqdm
import time
DATA_DIR=''
PRETRAIN_DIR=''
parser = argparse.ArgumentParser()
#about dataset
parser.add_argument('-dataset', type=str, default='miniimagenet', choices=['miniimagenet', 'tieredimagenet'])
parser.add_argument('-data_dir', type=str, default=DATA_DIR,help='dir of datasets')
parser.add_argument('-set',type=str,default='val',choices=['val', 'test'],help='the set used for validation')
#about model
parser.add_argument('-pretrain_dir', type=str, default=PRETRAIN_DIR)
parser.add_argument('-backbone_name', type=str, default='resnet12')
#about training
parser.add_argument('-beta', type=int, default=1,help='the hyparameter of DiffKendall')
parser.add_argument('-bs', type=int, default=4,help='batch size of tasks')
parser.add_argument('-max_epoch', type=int, default=60)
parser.add_argument('-lr', type=float, default=0.001)
parser.add_argument('-step_size', type=int, default=10)
parser.add_argument('-gamma', type=float, default=0.5)
parser.add_argument('-val_frequency',type=int,default=50)
parser.add_argument('-random_val_task',action='store_true',help='random samples tasks for validation at each epoch')
parser.add_argument('-save_all',action='store_true',help='save models on each epoch')
#about task
parser.add_argument('-way', type=int, default=5)
parser.add_argument('-shot', type=int, default=1)
parser.add_argument('-query', type=int, default=15,help='number of query image per class')
parser.add_argument('-val_episode', type=int, default=200, help='number of validation episode')
# OTHERS
parser.add_argument('-gpu', default='7')
args = parser.parse_args()
pprint(vars(args))
num_gpu = set_gpu(args)
args.save_path = 'diffkendall/%s/%dshot-%dway/'%(args.dataset,args.shot,args.way)
args.save_path = osp.join('checkpoint',args.save_path)
ensure_path(args.save_path)
def save_model(name):
torch.save(dict(params=model.state_dict()), osp.join(args.save_path, name + '.pth'))
# Model Setup
model = Kendall(args)
model = load_model(args, model)
model = nn.DataParallel(model, list(range(num_gpu)))
model = model.cuda()
# Dataset Setup
if args.dataset == 'miniimagenet':
from dataset import MiniImageNet
trainset = MiniImageNet('train', args)
valset = MiniImageNet(args.set, args)
elif args.dataset == 'tieredimagenet':
from dataset import tieredImageNet
trainset = tieredImageNet('train', args)
valset = tieredImageNet(args.set, args)
else:
raise ValueError('Unknown dataset')
train_sampler = CategoriesSampler(trainset.label, args.val_frequency*args.bs, args.way, args.shot + args.query)
train_loader = DataLoader(dataset=trainset, batch_sampler=train_sampler, pin_memory=True)
val_sampler = CategoriesSampler(valset.label, args.val_episode, args.way, args.shot + args.query)
val_loader = DataLoader(dataset=valset, batch_sampler=val_sampler, pin_memory=True)
args.random_val_task = False
if not args.random_val_task:
print ('fix val set for all epochs')
val_loader=[x for x in val_loader]
print('save all checkpoint models:', (args.save_all is True))
label = torch.arange(args.way, dtype=torch.int8).repeat(args.query)
label = label.type(torch.LongTensor)
label = label.cuda()
optimizer = torch.optim.SGD([{'params': model.parameters(),'lr':args.lr}], momentum=0.9, nesterov=True, weight_decay=0.0005)
#lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.step_size, gamma=args.gamma)
trlog = {}
trlog['args'] = vars(args)
trlog['train_loss'] = []
trlog['val_loss'] = []
trlog['train_acc'] = []
trlog['val_acc'] = []
trlog['max_acc'] = 0.0
trlog['max_acc_epoch'] = 0
global_count = 0
writer = SummaryWriter(osp.join(args.save_path,'tf'))
result_list=[args.save_path]
for epoch in range(1, args.max_epoch + 1):
print (args.save_path)
start_time=time.time()
tl = Averager()
ta = Averager()
tqdm_gen = tqdm.tqdm(train_loader)
model.train()
optimizer.zero_grad()
for i, batch in enumerate(tqdm_gen, 1):
global_count = global_count + 1
data, _ = [_.cuda() for _ in batch]
k = args.way * args.shot
model.module.mode = 'get_feat'
data = model(data)
data_shot, data_query = data[:k], data[k:]
model.module.mode = 'diffkendall'
sig_score, k_score = model((data_shot, data_query))
loss = F.cross_entropy(sig_score, label)
acc = count_acc(k_score, label)
writer.add_scalar('data/loss', float(loss), global_count)
writer.add_scalar('data/acc', float(acc), global_count)
total_loss = loss/args.bs
writer.add_scalar('data/total_loss', float(total_loss), global_count)
tqdm_gen.set_description('epo {}, total loss={:.4f} acc={:.4f}'
.format(epoch, total_loss.item(), acc))
tl.add(total_loss.item())
ta.add(acc)
total_loss.backward()
if i%args.bs==0:
optimizer.step()
optimizer.zero_grad()
tl = tl.item()
ta = ta.item()
vl = Averager()
va = Averager()
#validation
model.eval()
with torch.no_grad():
tqdm_gen = tqdm.tqdm(val_loader)
for i, batch in enumerate(tqdm_gen, 1):
data, _ = [_.cuda() for _ in batch]
k = args.way * args.shot
model.module.mode = 'get_feat'
data = model(data)
data_shot, data_query = data[:k], data[k:]
model.module.mode = 'kendall'
k_score = model((data_shot, data_query))
loss = F.cross_entropy(k_score, label)
acc = count_acc(k_score, label)
vl.add(loss.item())
va.add(acc)
vl = vl.item()
va = va.item()
writer.add_scalar('data/val_loss', float(vl), epoch)
writer.add_scalar('data/val_acc', float(va), epoch)
tqdm_gen.set_description('epo {}, val, loss={:.4f} acc={:.4f}'.format(epoch, vl, va))
print ('val acc:%.4f'%va)
if va >= trlog['max_acc']:
print ('*********A better model is found*********')
trlog['max_acc'] = va
trlog['max_acc_epoch'] = epoch
save_model('max_acc')
trlog['train_loss'].append(tl)
trlog['train_acc'].append(ta)
trlog['val_loss'].append(vl)
trlog['val_acc'].append(va)
result_list.append('epoch:%03d,training_loss:%.5f,training_acc:%.5f,val_loss:%.5f,val_acc:%.5f'%(epoch,tl,ta,vl,va))
torch.save(trlog, osp.join(args.save_path, 'trlog'))
if args.save_all:
save_model('epoch-%d'%epoch)
torch.save(optimizer.state_dict(), osp.join(args.save_path,'optimizer_latest.pth'))
print('best epoch {}, best val acc={:.4f}'.format(trlog['max_acc_epoch'], trlog['max_acc']))
print ('This epoch takes %d seconds'%(time.time()-start_time),'\nstill need %.2f hour to finish'%((time.time()-start_time)*(args.max_epoch-epoch)/3600))
#lr_scheduler.step()
writer.close()
save_list_to_txt(os.path.join(args.save_path,'results.txt'),result_list)