forked from open-mmlab/mmpretrain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetafile.yml
103 lines (102 loc) · 3.85 KB
/
metafile.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
Collections:
- Name: MFF
Metadata:
Training Data: ImageNet-1k
Training Techniques:
- AdamW
Training Resources: 8x A100-80G GPUs
Architecture:
- ViT
Paper:
Title: Improving Pixel-based MIM by Reducing Wasted Modeling Capability
URL: https://arxiv.org/pdf/2308.00261.pdf
README: configs/mff/README.md
Models:
- Name: mff_vit-base-p16_8xb512-amp-coslr-300e_in1k
Metadata:
Epochs: 300
Batch Size: 2048
FLOPs: 17581972224
Parameters: 85882692
Training Data: ImageNet-1k
In Collection: MaskFeat
Results: null
Weights: https://download.openmmlab.com/mmpretrain/v1.0/mff/mff_vit-base-p16_8xb512-amp-coslr-300e_in1k/mff_vit-base-p16_8xb512-amp-coslr-300e_in1k_20230801-3c1bcce4.pth
Config: configs/mff/mff_vit-base-p16_8xb512-amp-coslr-300e_in1k.py
Downstream:
- vit-base-p16_mff-300e-pre_8xb128-coslr-100e_in1k
- vit-base-p16_mff-300e-pre_8xb2048-linear-coslr-90e_in1k
- Name: mff_vit-base-p16_8xb512-amp-coslr-800e_in1k
Metadata:
Epochs: 800
Batch Size: 2048
FLOPs: 17581972224
Parameters: 85882692
Training Data: ImageNet-1k
In Collection: MaskFeat
Results: null
Weights: https://download.openmmlab.com/mmpretrain/v1.0/mff/mff_vit-base-p16_8xb512-amp-coslr-800e_in1k/mff_vit-base-p16_8xb512-amp-coslr-800e_in1k_20230801-3af7cd9d.pth
Config: configs/mff/mff_vit-base-p16_8xb512-amp-coslr-800e_in1k.py
Downstream:
- vit-base-p16_mff-800e-pre_8xb128-coslr-100e_in1k
- vit-base-p16_mff-800e-pre_8xb2048-linear-coslr-90e_in1k
- Name: vit-base-p16_mff-300e-pre_8xb128-coslr-100e_in1k
Metadata:
Epochs: 100
Batch Size: 1024
FLOPs: 17581215744
Parameters: 86566120
Training Data: ImageNet-1k
In Collection: MaskFeat
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 83.0
Weights: https://download.openmmlab.com/mmpretrain/v1.0/mff/mff_vit-base-p16_8xb512-amp-coslr-300e_in1k/vit-base-p16_8xb128-coslr-100e_in1k/vit-base-p16_8xb128-coslr-100e_in1k_20230802-d746fdb7.pth
Config: configs/mff/benchmarks/vit-base-p16_8xb128-coslr-100e_in1k.py
- Name: vit-base-p16_mff-800e-pre_8xb128-coslr-100e_in1k
Metadata:
Epochs: 100
Batch Size: 1024
FLOPs: 17581215744
Parameters: 86566120
Training Data: ImageNet-1k
In Collection: MFF
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 83.7
Weights: https://download.openmmlab.com/mmpretrain/v1.0/mff/mff_vit-base-p16_8xb512-amp-coslr-800e_in1k/vit-base-p16_8xb128-coslr-100e/vit-base-p16_8xb128-coslr-100e_20230802-6780e47d.pth
Config: configs/mff/benchmarks/vit-base-p16_8xb128-coslr-100e_in1k.py
- Name: vit-base-p16_mff-300e-pre_8xb2048-linear-coslr-90e_in1k
Metadata:
Epochs: 90
Batch Size: 16384
FLOPs: 17581215744
Parameters: 86566120
Training Data: ImageNet-1k
In Collection: MFF
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 64.2
Weights:
Config: configs/mff/benchmarks/vit-base-p16_8xb2048-linear-coslr-90e_in1k.py
- Name: vit-base-p16_mff-800e-pre_8xb2048-linear-coslr-90e_in1k
Metadata:
Epochs: 90
Batch Size: 16384
FLOPs: 17581215744
Parameters: 86566120
Training Data: ImageNet-1k
In Collection: MFF
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 68.3
Weights: https://download.openmmlab.com/mmpretrain/v1.0/mff/mff_vit-base-p16_8xb512-amp-coslr-300e_in1k/vit-base-p16_8xb128-coslr-100e_in1k/vit-base-p16_8xb128-coslr-100e_in1k_20230802-d746fdb7.pth
Config: configs/mff/benchmarks/vit-base-p16_8xb2048-linear-coslr-90e_in1k.py