forked from open-mmlab/mmpretrain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
flamingo_fewshot_vqa.py
109 lines (103 loc) · 3.22 KB
/
flamingo_fewshot_vqa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
_base_ = [
'../_base_/default_runtime.py',
]
# model settings
model = dict(
type='Flamingo',
tokenizer=dict(
type='LlamaTokenizer', name_or_path='decapoda-research/llama-7b-hf'),
vision_encoder=dict(
type='VisionTransformer',
arch='l',
patch_size=14,
pre_norm=True,
norm_cfg=dict(type='LN', eps=1e-5),
layer_cfgs=dict(act_cfg=dict(type='QuickGELU')),
final_norm=False,
out_type='raw',
pretrained=(
'https://download.openmmlab.com/mmclassification/v0/clip/'
'vit-large-p14_clip-openai-pre_3rdparty_20230517-95e2af0b.pth'),
),
lang_encoder=dict(
base=dict(
type='AutoModelForCausalLM',
name_or_path='decapoda-research/llama-7b-hf',
local_files_only=True),
adapter=dict(
type='FlamingoLMAdapter',
vis_hidden_size=1024,
cross_attn_every_n_layers=4,
use_media_placement_augmentation=False),
),
task='vqa',
shot_prompt_tmpl=
'<image>Question:{question} Short Answer:{answer}<|endofchunk|>',
final_prompt_tmpl='<image>Question:{question} Short Answer:',
generation_cfg=dict(num_beams=3, max_new_tokens=5, length_penalty=-2.0))
# data settings
data_preprocessor = dict(
mean=[122.770938, 116.7460125, 104.09373615],
std=[68.5005327, 66.6321579, 70.32316305],
to_rgb=True,
)
test_pipeline = [
dict(
type='ApplyToList',
# Flamingo requires to load multiple images during few-shot inference.
scatter_key='img_path',
transforms=[
dict(type='LoadImageFromFile'),
dict(
type='ResizeEdge',
scale=224,
interpolation='bicubic',
backend='pillow'),
dict(type='CenterCrop', crop_size=(224, 224)),
],
collate_keys=['img', 'scale_factor', 'ori_shape'],
),
dict(
type='PackInputs',
algorithm_keys=['question', 'gt_answer', 'gt_answer_weight', 'shots'],
meta_keys=['image_id']),
]
val_dataloader = dict(
batch_size=8,
num_workers=8,
dataset=dict(
type='FlamingoEvalCOCOVQA',
data_root='data/coco',
data_prefix='val2014',
question_file='annotations/v2_OpenEnded_mscoco_val2014_questions.json',
ann_file='annotations/v2_mscoco_val2014_annotations.json',
pipeline=test_pipeline,
num_shots=2,
num_support_examples=2048,
num_query_examples=5000,
),
sampler=dict(type='DefaultSampler', shuffle=False),
persistent_workers=True,
)
val_evaluator = dict(type='VQAAcc')
test_dataloader = dict(
batch_size=8,
num_workers=8,
dataset=dict(
type='FlamingoEvalCOCOVQA',
data_root='data/coco',
data_prefix='test2015',
question_file=
'annotations/v2_OpenEnded_mscoco_test-dev2015_questions.json',
pipeline=test_pipeline,
num_shots=0,
num_support_examples=2048,
num_query_examples=5000,
),
sampler=dict(type='DefaultSampler', shuffle=False),
persistent_workers=True,
)
test_evaluator = dict(type='ReportVQA', file_path='vqa_test-dev.json')
# schedule settings
val_cfg = dict()
test_cfg = dict()