-
Notifications
You must be signed in to change notification settings - Fork 0
/
loader.py
117 lines (97 loc) · 4.75 KB
/
loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# iBOT: https://github.com/bytedance/ibot
# --------------------------------------------------------
import random
import math
import numpy as np
from torchvision.datasets import ImageFolder
class ImageFolderInstance(ImageFolder):
def __getitem__(self, index):
img, target = super(ImageFolderInstance, self).__getitem__(index)
return img, target, index
class ImageFolderMask(ImageFolder):
def __init__(self, *args, patch_size, pred_ratio, pred_ratio_var, pred_aspect_ratio,
pred_shape='block', pred_start_epoch=0, **kwargs):
super(ImageFolderMask, self).__init__(*args, **kwargs)
self.psz = patch_size
self.pred_ratio = pred_ratio[0] if isinstance(pred_ratio, list) and \
len(pred_ratio) == 1 else pred_ratio
self.pred_ratio_var = pred_ratio_var[0] if isinstance(pred_ratio_var, list) and \
len(pred_ratio_var) == 1 else pred_ratio_var
if isinstance(self.pred_ratio, list) and not isinstance(self.pred_ratio_var, list):
self.pred_ratio_var = [self.pred_ratio_var] * len(self.pred_ratio)
self.log_aspect_ratio = tuple(map(lambda x: math.log(x), pred_aspect_ratio))
self.pred_shape = pred_shape
self.pred_start_epoch = pred_start_epoch
def get_pred_ratio(self):
if hasattr(self, 'epoch') and self.epoch < self.pred_start_epoch:
return 0
if isinstance(self.pred_ratio, list):
pred_ratio = []
for prm, prv in zip(self.pred_ratio, self.pred_ratio_var):
assert prm >= prv
pr = random.uniform(prm - prv, prm + prv) if prv > 0 else prm
pred_ratio.append(pr)
pred_ratio = random.choice(pred_ratio)
else:
assert self.pred_ratio >= self.pred_ratio_var
pred_ratio = random.uniform(self.pred_ratio - self.pred_ratio_var, self.pred_ratio + \
self.pred_ratio_var) if self.pred_ratio_var > 0 else self.pred_ratio
return pred_ratio
def set_epoch(self, epoch):
self.epoch = epoch
def __getitem__(self, index):
output = super(ImageFolderMask, self).__getitem__(index)
masks = []
for img in output[0]:
try:
H, W = img.shape[1] // self.psz, img.shape[2] // self.psz
except:
# skip non-image
continue
high = self.get_pred_ratio() * H * W
if self.pred_shape == 'block':
# following BEiT (https://arxiv.org/abs/2106.08254), see at
# https://github.com/microsoft/unilm/blob/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd/beit/masking_generator.py#L55
mask = np.zeros((H, W), dtype=bool)
mask_count = 0
while mask_count < high:
max_mask_patches = high - mask_count
delta = 0
for attempt in range(10):
low = (min(H, W) // 3) ** 2
target_area = random.uniform(low, max_mask_patches)
aspect_ratio = math.exp(random.uniform(*self.log_aspect_ratio))
h = int(round(math.sqrt(target_area * aspect_ratio)))
w = int(round(math.sqrt(target_area / aspect_ratio)))
if w < W and h < H:
top = random.randint(0, H - h)
left = random.randint(0, W - w)
num_masked = mask[top: top + h, left: left + w].sum()
if 0 < h * w - num_masked <= max_mask_patches:
for i in range(top, top + h):
for j in range(left, left + w):
if mask[i, j] == 0:
mask[i, j] = 1
delta += 1
if delta > 0:
break
if delta == 0:
break
else:
mask_count += delta
elif self.pred_shape == 'rand':
mask = np.hstack([
np.zeros(H * W - int(high)),
np.ones(int(high)),
]).astype(bool)
np.random.shuffle(mask)
mask = mask.reshape(H, W)
else:
# no implementation
assert False
masks.append(mask)
return output + (masks,)