-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimport_gamess_os_1e_3c_common.f90
74 lines (74 loc) · 3.63 KB
/
import_gamess_os_1e_3c_common.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
! subroutine os_1e_3c_real(what,p2_l,p2_r,n_rec,vb_p,r_l,z_l,r_r,z_r)
! type(gam_operator_data), intent(in) :: what ! Operator parameters
! integer(ik), intent(in) :: p2_l, p2_r, n_rec ! Upper dimensions of the vb_p array
! real(rk), intent(out) :: vb_p(0:p2_l,0:p2_r,0:n_rec) ! Buffer used for recurrences, and the final result
! real(ark), intent(in) :: r_l(:) ! Centre of the left b.f.
! real(ark), intent(in) :: z_l ! Orbital exponent of the left b.f.
! real(ark), intent(in) :: r_r(:) ! ditto, for the right b.f.
! real(ark), intent(in) :: z_r !
! !
real(kind(z_l)) :: zeta, p(3), c(3), s00, s, t
integer(ik) :: l_l, l_r ! "Angular momentum" on the the left and right
integer(ik) :: m_l, m_r, ic, id1, id2, id3, m_i
!
! Sanity check: if the recursion order enough to reach the desided angular momentum?
!
l_l = sum(ang_nxyz(p2_l,:))
l_r = sum(ang_nxyz(p2_r,:))
if (n_rec/=l_l+l_r) stop 'import_gamess%os_1e_3c - called with an unreasonable order of recursion'
!
call os_common_primitives(r_l,z_l,r_r,z_r,zeta=zeta,p=p,s00a=s00)
c = real(what%op_xyz,kind=kind(c))
!
! Initialize primitive integrals. This is the only part which depends on the
! specific operator; the recursions are identical for all kernels.
!
t = zeta * sum((p-c)**2)
call os_basic_integral(what,zeta,t,n_rec,vb_p(0,0,:))
!
! (0|f(r)|0) integrals
!
vb_p(0,0,:) = s00 * vb_p(0,0,:)
! write (out,"('Basic integrals = ',10g16.9)") vb_p(0,0,:)
!
! (0|f(r)|n) integrals; special-case recursion.
!
right_bootstrap: do m_r=1,p2_r ! S-functions (m_r=0) are already taken care of
l_r = sum(ang_nxyz(m_r,:)) ! Total "angular momentum" in the right function
find_right: do ic=1,3
id1 = drop_xyz(m_r,ic)
if (id1<0) cycle find_right
order_bootstrap: do m_i=0,n_rec-l_r
s = (p(ic)-r_r(ic)) * vb_p(0,id1,m_i) - (p(ic)-c(ic)) * vb_p(0,id1,m_i+1)
id2 = drop_xyz(id1,ic)
if (id2>=0) s = s + (ang_nxyz(id1,ic)/(2*zeta)) * (vb_p(0,id2,m_i) - vb_p(0,id2,m_i+1))
vb_p(0,m_r,m_i) = s
! write (out,"(' set ',3i5,' to ',g16.9)") 0, m_r, m_i, s
end do order_bootstrap
exit find_right
end do find_right
end do right_bootstrap
!
! Now the general case: always recurse on the left.
!
right_loop: do m_r=0,p2_r
l_r = sum(ang_nxyz(m_r,:)) ! Total "angular momentum" in the right function
left_recurrence: do m_l=1,p2_l
l_l = sum(ang_nxyz(m_l,:)) ! Total "angular momentum" in the left function
find_left: do ic=1,3
id1 = drop_xyz(m_l,ic)
if (id1<0) cycle find_left
order_loop: do m_i=0,n_rec-l_l-l_r
s = (p(ic)-r_l(ic)) * vb_p(id1,m_r,m_i) - (p(ic)-c(ic)) * vb_p(id1,m_r,m_i+1)
id2 = drop_xyz(id1,ic)
if (id2>=0) s = s + (ang_nxyz(id1,ic)/(2*zeta)) * (vb_p(id2,m_r,m_i) - vb_p(id2,m_r,m_i+1))
id3 = drop_xyz(m_r,ic)
if (id3>=0) s = s + (ang_nxyz(m_r,ic)/(2*zeta)) * (vb_p(id1,id3,m_i) - vb_p(id1,id3,m_i+1))
vb_p(m_l,m_r,m_i) = s
! write (out,"(' set ',3i5,' to ',g16.9)") 0, m_r, m_i, s
end do order_loop
exit find_left
end do find_left
end do left_recurrence
end do right_loop
! end subroutine os_1e_3c_real