-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
executable file
·224 lines (176 loc) · 6.31 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import os
import random
from argparse import ArgumentParser
from datetime import datetime
from importlib import import_module
from time import perf_counter
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from torch import optim
from data.dataset import LungSegmentDataset
from data import transforms as aug
from models.implicit_autoencoder import ImplicitAutoEncoder, ImplicitDecoder
from models.losses import SegLoss
from models.resnet18 import ResNet3d18Backbone
from utils.logger import logger
from utils.metrics import foreground_dice_score
def _parse_cmd_args():
arg_parser = ArgumentParser()
arg_parser.add_argument("--gpu", default="0,1,2,3", help="GPU ID.")
arg_parser.add_argument("--cfg", required=True,
help="Python config module.")
arg_parser.add_argument("--data_dir", required=True,
help="Data directory")
arg_parser.add_argument("--df_path", required=True,
help="Data info csv path.")
arg_parser.add_argument("--log_dir", required=True,
help="Tensorboard log directory.")
args = arg_parser.parse_args()
return args
def _set_rng_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
def _init_dataloaders(args):
data_dir = args.data_dir
df = pd.read_csv(args.df_path)
transforms_train = [
aug.OnehotEncode("lobe", 6),
aug.MinMaxNormalize(cfg.win_min, cfg.win_max),
aug.SampleGrid(cfg.out_res, "random"),
aug.SampleTarget("lungsegment"),
aug.ConcatInputs(cfg.input_keys),
aug.ToTensor()
]
transforms_val = [
aug.OnehotEncode("lobe", 6),
aug.MinMaxNormalize(cfg.win_min, cfg.win_max),
aug.SampleGrid(cfg.eval_res, "regular"),
aug.SampleTarget("lungsegment"),
aug.ConcatInputs(cfg.input_keys),
aug.ToTensor()
]
ds_train = LungSegmentDataset(df, data_dir, transforms_train, "train")
dl_train = LungSegmentDataset.get_dataloader(ds_train, cfg.batch_size,
True, cfg.num_workers)
ds_val = LungSegmentDataset(df, data_dir, transforms_val, "val")
dl_val = LungSegmentDataset.get_dataloader(ds_val, cfg.eval_batch_size,
False, cfg.num_workers)
return dl_train, dl_val
def _init_model(args):
encoder = ResNet3d18Backbone(**cfg.enc_cfgs)
decoder = ImplicitDecoder(**cfg.dec_cfgs)
model = ImplicitAutoEncoder(encoder, decoder)
devices = [int(x) for x in args.gpu.split(",")]
if len(devices) > 1:
model = nn.DataParallel(model.cuda(), devices)
else:
model = model.cuda()
return model
@logger
def _train_epoch(model, dataloader, criterion, optimizer, scheduler):
model.train()
loss_train = 0
fg_acc_train = 0
for _, sample in enumerate(dataloader):
optimizer.zero_grad()
inputs, targets, grids = sample
inputs = inputs.cuda()
targets = targets.cuda()
grids = grids.cuda()
outputs = model(inputs, grids)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
scheduler.step()
with torch.no_grad():
loss_train += loss.cpu().item()
y_true = targets.cpu().numpy().reshape(-1)
y_pred = np.argmax(outputs.cpu().numpy(), axis=1).reshape(-1)
fg_acc_train += (y_true[y_true > 0] == y_pred[y_true > 0]).mean()
loss_train /= len(dataloader)
fg_acc_train /= len(dataloader)
results = {
"loss": loss_train,
"fg_accuracy": fg_acc_train
}
return results
@logger
@torch.no_grad()
@torch.cuda.amp.autocast()
def _eval_epoch(model, dataloader, criterion):
torch.cuda.empty_cache()
model.eval()
loss_val = 0
fg_acc_val = 0
fg_dice_val = 0
for _, sample in enumerate(dataloader):
inputs, targets, grids = sample
inputs = inputs.cuda()
targets = targets.cuda()
grids = grids.cuda()
outputs = model(inputs, grids)
loss = criterion(outputs, targets)
loss_val += loss.cpu().item()
y_true = targets.cpu().numpy().reshape(-1)
y_pred = np.argmax(outputs.cpu().numpy(), axis=1).reshape(-1)
fg_acc_val += (y_true[y_true > 0] == y_pred[y_true > 0]).mean()
fg_dice_val += foreground_dice_score(y_true, y_pred, 18)
loss_val /= len(dataloader)
fg_acc_val /= len(dataloader)
fg_dice_val /= len(dataloader)
results = {
"loss": loss_val,
"fg_accuracy": fg_acc_val,
"fg_dice": fg_dice_val,
}
return results
def _log_metrics(results_train, results_val):
metrics = {"train": results_train, "val": results_val}
metrics = pd.DataFrame(metrics)
print(metrics)
def _log_tensorboard(tb_writer, epoch, results_train, results_val):
for k in results_train.keys():
tb_writer.add_scalars(k, {"train": results_train[k],
"val": results_val[k]}, epoch)
for k in results_val.keys():
if "dice" in k:
tb_writer.add_scalar(k, results_val[k], epoch)
tb_writer.flush()
def main():
_set_rng_seed(42)
args = _parse_cmd_args()
torch.cuda.set_device(int(args.gpu.split(",")[0]))
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
print(args.cfg)
global cfg
cfg = import_module(f"configs.{args.cfg}_config")
dl_train, dl_val = _init_dataloaders(args)
model = _init_model(args)
criterion = SegLoss(cfg.w_ce, cfg.w_dice, 19)
optimizer = optim.AdamW(model.parameters(), cfg.max_lr)
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer,
len(dl_train) * cfg.epochs, cfg.min_lr)
# set up logging
log_dir = args.log_dir
cur_time = datetime.now().strftime("%Y%m%d-%H%M%S")
print(cur_time)
log_dir = os.path.join(log_dir, cur_time)
os.makedirs(log_dir)
time_train = 0
for i in range(cfg.epochs):
print(f"Epoch {i}")
epoch_start = perf_counter()
res_train = _train_epoch(model, dl_train, criterion,
optimizer, scheduler)
time_train += (perf_counter() - epoch_start)
if (i + 1) % cfg.eval_freq == 0:
res_val = _eval_epoch(model, dl_val, criterion)
_log_metrics(res_train, res_val)
torch.save(model.state_dict(), os.path.join(log_dir,
f"model_{i + 1}.pth"))
print(f"Total training time: {time_train:.4f}")
if __name__ == "__main__":
main()