Skip to content

Latest commit

 

History

History
66 lines (37 loc) · 1.87 KB

readme.md

File metadata and controls

66 lines (37 loc) · 1.87 KB

Online Human-Bot Interactions: Detection, Estimation, and Characterization


├── cresci-2015
│   └── train.py  # train model on cresci-2015
├── preprocess.py # convert raw dataset into standard format
├── sta.py
├── Twibot-20    
│   └── train.py  # train model on Twibot-20
└── Twibot-22
    └── train.py  # train model on Twibot-22
  • implement details: “Sentiment”, “Timing” features are discarded since required information is not included in datasets.

How to reproduce:

  1. specify the dataset b y running dataset=Twibot-22 (Twibot-22 for example) ;

  2. convert the raw dataset into standard format by running

    python preprocess.py --datasets ${dataset}

    this command will create related features in corresponding directory.

  3. train random forest model by running:

    cd ${dataset} && python train.py > result.txt

    the final result will be saved into result.txt

Result:

random seed: 100, 200, 300, 400, 500

dataset acc precison recall f1
Cresci-2015 mean 0.9316 0.9222 0.9740 0.9473
Cresci-2015 std 0.0054 0.0066 0.0090 0.0042
Twibot-20 mean 0.7874 0.7804 0.8437 0.8108
Twibot-20 std 0.0055 0.0061 0.0067 0.0048
Twibot-22 mean 0.7392 0.7574 0.1683 0.2754
Twibot-22 std 0.0002 0.0031 0.0021 0.0026
baseline acc on Twibot-22 f1 on Twibot-22 type tags
Varol et al. 0.7392 0.2754 P T random forest