-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path003_inverted_pendulum_flux.py
71 lines (50 loc) · 1.4 KB
/
003_inverted_pendulum_flux.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# This example was discussed during a lecture on the 21st of November, 2023.
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import solve_ivp
graph_name = "Inverted pendulum flux"
fig = plt.gcf()
fig.canvas.manager.set_window_title(graph_name)
plt.title(graph_name)
plt.axis("equal")
def U(x):
return -x**2/2
def T(dxdt):
return dxdt**2/2
def E(x, dxdt):
return U(x) + T(dxdt)
X, Y = np.meshgrid(np.linspace(-1, 3.8), np.linspace(0, 3.8))
plt.contour(X, Y, E(X, Y), levels=[E(0, 1)])
# Define how many points should lie at a distance of RADIUS from the center
RADIUS = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]
POINTS_COUNT = [1, 5, 10, 15, 20, 25, 30]
def system(_, y):
return [y[1], y[0]]
def ra_pairs(r, n):
for i in range(len(r)):
for j in range(n[i]):
# Yield radius and angle
yield r[i], j * (2 * np.pi / n[i])
ti = 0
tf = 1.4
xi = []
dxdti = []
for r, a in ra_pairs(RADIUS, POINTS_COUNT):
# Add 1 to the y component because the circle should be centered in (0,1)
xi.append(r * np.cos(a))
dxdti.append(r * np.sin(a) + 1)
plt.plot(xi, dxdti, 'bo', label=f"t={ti}s")
xf = []
dxdtf = []
for p in range(len(xi)):
x = xi[p]
dxdt = dxdti[p]
solution = solve_ivp(system, [ti, tf], [x, dxdt], t_eval=[tf])
xf.append(solution.y[0])
dxdtf.append(solution.y[1])
plt.plot(xf, dxdtf, 'ro', label=f"t={tf}s")
plt.xlabel = "x"
plt.ylabel = "dx/dt"
plt.legend()
plt.grid()
plt.show()