forked from NasimKaveh/Thermal-HVAC-model
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgym_room.py
214 lines (156 loc) · 7.09 KB
/
gym_room.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import time
import gym
from gym import spaces
import numpy as np
from AC_room import Room
import matplotlib.pyplot as plt
from AC_room import p_controller, I_controller
import argparse
import plotly.graph_objects as go
from stable_baselines.common.env_checker import check_env
from stable_baselines import DQN, ACKTR, PPO2, SAC
from stable_baselines.common.cmd_util import make_vec_env
from stable_baselines.common.policies import FeedForwardPolicy, register_policy
parser = argparse.ArgumentParser()
parser.add_argument("--mode", type=str, default="predict", help="Define the mode train or predict")
#With PPO2, with the default parameters, the learning was fluctuating at the steady state by more than the offset value degC.
#In RL, when there is fluctuation at the steady state, I needed to decrease the learning rate (in my case from 0.001 to 0.0001) and increase the batch size by a factor of 10
#the batch size is represented by the parameter n_steps in PPO2 from Stable Baseline, and its defalut value is 128.
#Also for the reward function, I specified to give a reward of 1 for any error less than 0.5 deg C(offset value) and
#and reduce the reward with a decreasing exponential function
class GymACRoom(gym.Env):
metadata = {'render.modes' : ['human']}
def __init__(self, mC=300, K=20, Q_AC_Max = 1000, simulation_time = 12*60*60, control_step = 300):
super(GymACRoom, self).__init__()
self.AC_sim = Room(mC=300, K=20, Q_AC_Max = 1000, simulation_time = 12*60*60, control_step = 300)
self.time_step = control_step
self.Q_AC_Max = Q_AC_Max
self.action_space = spaces.Box(low = -1, high = 1, shape=(1,))
n_obs = 1 # number of observation (dimension)
self.observation_space = spaces.Box(low = -100, high = 100, shape =(n_obs,))
self.observation = np.empty(n_obs)
def reset(self):
self.AC_sim.reset(T_in = np.random.randint(20, 30))
self.iter = 0
self.observation[0] = self.AC_sim.T_in - self.AC_sim.T_set
return self.observation
# self.obs [0] =dfddfdf if you have more than one obs
def step(self, action):
self.AC_sim.update_Tin(action=action)
self.observation[0] = self.AC_sim.T_in - self.AC_sim.T_set
self.iter += 1
if self.iter >= self.AC_sim.max_iteration:
done = True
else:
done = False
#Reward function
#reward NoOffSet
reward = np.exp(-(abs(10*self.observation)))
#reward NoOffSet
#reward = np.exp(-(abs(self.observation)))
#Reward with Offset
'''
if abs(self.observation) < 0.5:
reward = 1
else:
reward = np.exp(-(abs(self.observation)-0.5))
'''
info = {}
return self.observation, reward, done, info
def render(self, mode='human'):
pass
def close (self):
pass
# Custom MLP policy of three layers of size 128 each
class CustomPolicy(FeedForwardPolicy):
def __init__(self, *args, **kwargs):
super(CustomPolicy, self).__init__(*args, **kwargs,
net_arch=[dict(pi=[8, 8],
vf=[8, 8])],
feature_extraction="mlp")
if __name__ == "__main__":
#argparse to define the mode train or predict
args=parser.parse_args()
mode = args.mode
####
if mode =='train':
env = GymACRoom()
learning_rate = [0.0001]
# Register the policy, it will check that the name is not already taken
register_policy('CustomPolicy', CustomPolicy)
for lr in learning_rate:
model = PPO2(policy = 'CustomPolicy', env=env, verbose=1, learning_rate=lr, n_steps=1280, tensorboard_log="./AC_tensorboard/")
model.learn(total_timesteps = 1000000)
#model.save("AC_PPO2_LR_exp"+str(lr)+".zip")
model.save("AC_PPO2_exp_neg_noOffset.zip")
'''
# scheduling learning rate
#lr= 0.1
model = PPO2('MlpPolicy', env, verbose=1, learning_rate=0.1, tensorboard_log="./AC_tensorboard/")
model.learn(total_timesteps = 100000)
model.learning_rate = 0.01
model.learn(total_timesteps = 100000)
model.learn(total_timesteps = 100000)
model.learning_rate = 0.001
model.learn(total_timesteps = 100000)
model.save("AC_PPO2_LR_.zip")
'''
else:
env = GymACRoom() #for RL part
env2 = GymACRoom() #for PI controller
model= PPO2.load("AC_PPO2_LR_exp.zip")
obs = env.reset() #for RL part
obs2 = env2.reset() #for PI controller
env2.AC_sim.T_in = env.AC_sim.T_in #both RL and PI controllers start with the same initial T_in
#plot variables definition
n_iter = 1000
TinRL = np.empty(n_iter)
Tset = (env.AC_sim.T_set) * np.ones_like(TinRL)
T_Off_high = Tset + 0.5
T_Off_low = Tset - 0.5
t = np.empty(n_iter)
Tin = np.empty(n_iter)
errorI = 0
#
for i in range(n_iter):
action, _states = model.predict(obs)
print('action is', action)
#Storing values for plot
t[i] = env.time_step/60 * i
TinRL[i] = env.AC_sim.T_in
####
obs, rewards, dones, info = env.step(action)
print('states are', obs)
error = obs2[0]
errorI += error
control_signal = p_controller(error) + I_controller(errorI)
if abs(error) > 0.5:
current_action = control_signal # choose a power proportional to the gain
else:
current_action = 0
Tin[i] = env2.AC_sim.T_in
action2=current_action
print('current action2', action2)
obs2, rewards2, dones2, info2 = env2.step(action=action2)
if dones==True:
obs2 = env2.reset()
obs= env.reset()
env2.AC_sim.T_in = env.AC_sim.T_in
plt.plot(t, TinRL, 'r--', label='RL_PPO2')
plt.plot(t, Tin, 'b--', label='PI')
plt.plot(t, Tset, 'g--', label='Tset')
plt.plot(t, T_Off_high, 'k--', label='T_set_hi')
plt.plot(t, T_Off_low, 'k--', label='T_set_lo')
plt.xlabel('Iteration time (min)')
plt.ylabel('Temperature (deg. C)')
plt.legend()
plt.show()
'''
fig = go.Figure()
fig.add_trace(go.Scatter(x=t, y=TinRL, name='T_in_RL', mode='markers', marker_color='rgba(70, 0, 0, .8)'))
fig.add_trace(go.Scatter(x=t, y=Tin, name='T_in_PI', mode='markers', marker_color='rgba(200, 0, 0, .8)'))
fig.add_trace(go.Scatter(x=t, y=Tin, name='Tset', mode='markers', marker_color='rgba(0, 0, 200, 1)'))
fig.show()
'''
# to see the reward episod progress, get the http address by pasting the following command in the conda directory where this code is running.
# --> tensorboard --logdir ./AC_tensorboard/