forked from DmesonAnalysers/DmesonAnalysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProjectDplusDsTree.py
423 lines (388 loc) · 21 KB
/
ProjectDplusDsTree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
'''
python script for the projection of D+, Ds+, D*+ and Lc particles TTrees
run: python ProjectDplusDsTree.py cfgFileName.yml cutSetFileName.yml outFileName.root
[--ptweights PtWeightsFileName.root histoName]
[--ptweightsB PtWeightsFileName.root histoName]
[--multweights MultWeightsFileName.root histoName]
[--std]
if the --ptweights argument is provided, pT weights will be applied to prompt and FD pT distributions
if the --ptweightsB argument is provided, pT weights will be applied to FD pT distributions instead of
those for the prompt
--std, used to apply standard analysis cuts on tree (account for differences in conventions)
'''
import sys
import argparse
import yaml
import numpy as np
import uproot
from scipy.interpolate import InterpolatedUnivariateSpline
from ROOT import TFile, TH1F, TDatabasePDG # pylint: disable=import-error,no-name-in-module
from utils.TaskFileLoader import LoadNormObjFromTask, LoadSparseFromTask
from utils.DfUtils import FilterBitDf, LoadDfFromRootOrParquet
from utils.AnalysisUtils import MergeHists, ApplySplineFuncToColumn
parser = argparse.ArgumentParser(description='Arguments to pass')
parser.add_argument('cfgFileName', metavar='text', default='cfgFileName.yml',
help='config file name with root input files')
parser.add_argument('cutSetFileName', metavar='text', default='cutSetFileName.yml',
help='input file with cut set')
parser.add_argument('outFileName', metavar='text', default='outFileName.root',
help='output root file name')
parser.add_argument('--ptweights', metavar=('text', 'text'), nargs=2, required=False,
help='First path of the pT weights file, second name of the pT weights histogram')
parser.add_argument('--ptweightsB', metavar=('text', 'text'), nargs=2, required=False,
help='First path of the pT weights file, second name of the pT weights histogram')
parser.add_argument('--multweights', metavar=('text', 'text'), nargs=2, required=False,
help='First path of the mult weights file, second name of the mult weights histogram')
parser.add_argument('--LctopKpireso', type=int, required=False,
help='values to project single LctopKpi resonant channel (1: NonRes; 2: KStar; 3: Delta; 4: Lambda1520)')
parser.add_argument('--std', help='adapt to std. analysis cuts', action='store_true')
args = parser.parse_args()
#config with input file details
with open(args.cfgFileName, 'r') as ymlCfgFile:
inputCfg = yaml.load(ymlCfgFile, yaml.FullLoader)
inFileNames = inputCfg['filename']
if not isinstance(inFileNames, list):
inFileNames = [inFileNames]
isMC = inputCfg['isMC']
if not isMC:
if args.ptweights:
print('WARNING: pt weights will not be applied since it is not MC')
args.ptweights = None
if args.ptweightsB:
print('WARNING: ptB weights will not be applied since it is not MC')
args.ptweightsB = None
#TODO: add support for application of 2D weights
if args.multweights and (args.ptweights or args.ptweightsB):
print('ERROR: simultaneous application of pT and multiplicity weights not supported! Exit')
sys.exit()
#define filter bits
bitSignal = 0
bitPrompt = 2
bitFD = 3
bitRefl = 4
#define specific bits for Lc->pKpi resonant channel
bitsLcResonance = [9, 10, 11, 12] # ['NonRes', 'Lambda1520', 'KStar', 'Delta']
# define mass binning
particle = inputCfg['tree']['particle']
if particle == 'Ds':
mD = TDatabasePDG.Instance().GetParticle(431).Mass()
elif particle == 'Dplus':
mD = TDatabasePDG.Instance().GetParticle(411).Mass()
elif particle == 'Dstar':
mD = TDatabasePDG.Instance().GetParticle(413).Mass() - TDatabasePDG.Instance().GetParticle(421).Mass()
elif particle == 'Lc':
mD = TDatabasePDG.Instance().GetParticle(4122).Mass()
else:
print('Error: only Dplus, Ds, Dstar particles and Lc supported. Exit!')
sys.exit()
massBins = 500
if particle == 'Dstar':
massLimLow = mD - 0.01
massLimHigh = mD + 0.03
else:
massLimLow = mD - 0.25
massLimHigh = mD + 0.25
# selections to be applied
with open(args.cutSetFileName, 'r') as ymlCutSetFile:
cutSetCfg = yaml.load(ymlCutSetFile, yaml.FullLoader)
cutVars = cutSetCfg['cutvars']
selToApply = []
for iPt, _ in enumerate(cutVars['Pt']['min']):
selToApply.append('')
for varName in cutVars:
if varName == 'InvMass':
continue
if selToApply[iPt] != '':
selToApply[iPt] += ' & '
if args.std and varName == 'CosPiKPhi3':
selToApply[iPt] += '~'
selToApply[iPt] += f"({cutVars[varName]['min'][iPt]}<{cutVars[varName]['name']}<{cutVars[varName]['max'][iPt]})"
# dicts of TH1
allDict = {'InvMass': [], 'Pt': []}
promptDict = {'InvMass': [], 'Pt': []}
FDDict = {'InvMass': [], 'Pt': []}
promptGenList = []
FDGenList = []
# TODO: add second peak histograms for Ds
outFile = TFile(args.outFileName, 'recreate')
# load objects from task outputs
for iFile, inFileName in enumerate(inFileNames):
if iFile == 0:
hEv, normCounter = LoadNormObjFromTask(inFileName, inputCfg)
if isMC:
_, sparseGen = LoadSparseFromTask(inFileName, inputCfg) #only gen sparses used
else:
hEvPart, normCounterPart = LoadNormObjFromTask(inFileName, inputCfg)
hEv.Add(hEvPart)
normCounter.Add(normCounterPart)
if isMC:
_, sparseGenPart = LoadSparseFromTask(inFileName, inputCfg) #only gen sparses used
for sparseType in sparseGenPart:
sparseGen[sparseType].Add(sparseGenPart[sparseType])
# define pT binning (from gen sparses if MC)
if isMC:
nPtBins = sparseGen['GenPrompt'].GetAxis(0).GetNbins()
ptLimLow = sparseGen['GenPrompt'].GetAxis(0).GetBinLowEdge(1)
ptLimHigh = sparseGen['GenPrompt'].GetAxis(0).GetBinLowEdge(nPtBins) + \
sparseGen['GenPrompt'].GetAxis(0).GetBinWidth(nPtBins)
else:
nPtBins = 500
ptLimLow = 0.
ptLimHigh = 50.
ptBinWidth = (ptLimHigh-ptLimLow) / nPtBins
# load trees
if isMC:
dataFramePrompt = LoadDfFromRootOrParquet(inputCfg['tree']['filenamePrompt'], inputCfg['tree']['dirname'],
inputCfg['tree']['treename'])
if 'cand_type' in dataFramePrompt.columns: #if not filtered tree, select only prompt and not reflected
dataFramePrompt = FilterBitDf(dataFramePrompt, 'cand_type', [bitSignal, bitPrompt], 'and')
dataFramePrompt = FilterBitDf(dataFramePrompt, 'cand_type', [bitRefl], 'not')
if args.LctopKpireso in range(1, 5):
dataFramePrompt = FilterBitDf(dataFramePrompt, 'cand_type', [bitsLcResonance[args.LctopKpireso]], 'and')
dataFramePrompt.reset_index(inplace=True)
dataFrameFD = LoadDfFromRootOrParquet(inputCfg['tree']['filenameFD'], inputCfg['tree']['dirname'],
inputCfg['tree']['treename'])
if 'cand_type' in dataFrameFD.columns: #if not filtered tree, select only FD and not reflected
dataFrameFD = FilterBitDf(dataFrameFD, 'cand_type', [bitSignal, bitFD], 'and')
dataFrameFD = FilterBitDf(dataFrameFD, 'cand_type', [bitRefl], 'not')
if args.LctopKpireso in range(1, 5):
dataFrameFD = FilterBitDf(dataFrameFD, 'cand_type', [bitsLcResonance[args.LctopKpireso]], 'and')
dataFrameFD.reset_index(inplace=True)
# compute pt weights
if args.ptweights:
ptWeights = uproot.open(args.ptweights[0])[args.ptweights[1]]
bins = ptWeights.axis(0).edges()
ptCentW = [(bins[iBin]+bins[iBin+1])/2 for iBin in range(len(bins)-1)]
sPtWeights = InterpolatedUnivariateSpline(ptCentW, ptWeights.values())
dataFramePrompt['pt_weights'] = ApplySplineFuncToColumn(dataFramePrompt, 'pt_cand', sPtWeights, 0, 50)
if not args.ptweightsB:
dataFrameFD['pt_weights'] = ApplySplineFuncToColumn(dataFrameFD, 'pt_cand', sPtWeights, 0, 50)
sPtWeightsDfromB = sPtWeights
if args.ptweightsB:
ptWeightsB = uproot.open(args.ptweightsB[0])[args.ptweightsB[1]]
bins = ptWeightsB.axis(0).edges()
ptCentWB = [(bins[iBin]+bins[iBin+1])/2 for iBin in range(len(bins)-1)]
sPtWeightsB = InterpolatedUnivariateSpline(ptCentWB, ptWeightsB.values())
dataFrameFD['pt_weights'] = ApplySplineFuncToColumn(dataFrameFD, 'pt_B', sPtWeightsB, 0, 50)
# average correction for gen part since tree not available (--> good approximation)
hPtBvsPtGenD = sparseGen['GenFD'].Projection(2, 0).ProfileX()
ptCentGen, averagePtBvsPtGen = [], []
for iPt in range(1, hPtBvsPtGenD.GetNbinsX()+1):
ptCentGen.append(hPtBvsPtGenD.GetBinCenter(iPt))
averagePtBvsPtGen.append(hPtBvsPtGenD.GetBinContent(iPt))
aPtGenWeightsB = list(sPtWeightsB(averagePtBvsPtGen))
sPtWeightsDfromB = InterpolatedUnivariateSpline(ptCentGen, aPtGenWeightsB)
if args.multweights:
multWeights = uproot.open(args.multweights[0])[args.multweights[1]]
bins = multWeights.axis(0).edges()
multCent = [(bins[iBin]+bins[iBin+1])/2 for iBin in range(len(bins)-1)]
sMultWeights = InterpolatedUnivariateSpline(multCent, multWeights.values())
dataFramePrompt['mult_weights'] = ApplySplineFuncToColumn(dataFramePrompt, 'n_trkl', sMultWeights, 0, bins[-1])
dataFrameFD['mult_weights'] = ApplySplineFuncToColumn(dataFrameFD, 'n_trkl', sMultWeights, 0, bins[-1])
for (cuts, ptMin, ptMax) in zip(selToApply, cutVars['Pt']['min'], cutVars['Pt']['max']):
print(f'Projecting distributions for {ptMin:.1f} < pT < {ptMax:.1f} GeV/c')
ptLowLabel = ptMin * 10
ptHighLabel = ptMax * 10
# gen histos from sparses
binGenMin = sparseGen['GenPrompt'].GetAxis(0).FindBin(ptMin * 1.0001)
binGenMax = sparseGen['GenPrompt'].GetAxis(0).FindBin(ptMax * 0.9999)
sparseGen['GenPrompt'].GetAxis(0).SetRange(binGenMin, binGenMax)
sparseGen['GenFD'].GetAxis(0).SetRange(binGenMin, binGenMax)
if args.LctopKpireso:
sparseGen['GenPrompt'].GetAxis(2).SetRange(args.LctopKpireso+1, args.LctopKpireso+1) # "+1" applied to fix the discrepancy between the reso channel and the filled bin
sparseGen['GenFD'].GetAxis(3).SetRange(args.LctopKpireso+1, args.LctopKpireso+1) # "+1" applied to fix the discrepancy between the reso channel and the filled bin
if args.multweights:
hMultVsGenPtPrompt = sparseGen['GenPrompt'].Projection(4, 0)
for iPtD in range(1, hMultVsGenPtPrompt.GetXaxis().GetNbins()+1):
for iMult in range(1, hMultVsGenPtPrompt.GetYaxis().GetNbins()+1):
multCent = hMultVsGenPtPrompt.GetYaxis().GetBinCenter(iMult)
origContent = hMultVsGenPtPrompt.GetBinContent(iPtD, iMult)
origError = hMultVsGenPtPrompt.GetBinError(iPtD, iMult)
weight = 0
if sMultWeights(multCent) > 0:
weight = sMultWeights(multCent)
content = hMultVsGenPtPrompt.GetBinContent(iPtD, iMult) * weight
error = 0
if origContent > 0:
error = origError / origContent * content
hMultVsGenPtPrompt.SetBinContent(iPtD, iMult, content)
hMultVsGenPtPrompt.SetBinError(iPtD, iMult, error)
hGenPtPrompt = hMultVsGenPtPrompt.ProjectionX(f'hPromptGenPt_{ptLowLabel:.0f}_{ptHighLabel:.0f}',
0, hMultVsGenPtPrompt.GetYaxis().GetNbins()+1, 'e')
hMultVsGenPtFD = sparseGen['GenFD'].Projection(4, 0)
for iPtD in range(1, hMultVsGenPtFD.GetXaxis().GetNbins()+1):
for iMult in range(1, hMultVsGenPtFD.GetYaxis().GetNbins()+1):
multCent = hMultVsGenPtFD.GetYaxis().GetBinCenter(iMult)
origContent = hMultVsGenPtFD.GetBinContent(iPtD, iMult)
origError = hMultVsGenPtFD.GetBinError(iPtD, iMult)
weight = 0
if sMultWeights(multCent) > 0:
weight = sMultWeights(multCent)
content = hMultVsGenPtFD.GetBinContent(iPtD, iMult) * weight
error = 0
if origContent > 0:
error = origError / origContent * content
hMultVsGenPtFD.SetBinContent(iPtD, iMult, content)
hMultVsGenPtFD.SetBinError(iPtD, iMult, error)
hGenPtFD = hMultVsGenPtFD.ProjectionX(f'hFDGenPt_{ptLowLabel:.0f}_{ptHighLabel:.0f}',
0, hMultVsGenPtFD.GetYaxis().GetNbins()+1, 'e')
else:
hGenPtPrompt = sparseGen['GenPrompt'].Projection(0)
hGenPtPrompt.Sumw2()
if args.ptweights:
for iPt in range(1, hGenPtPrompt.GetNbinsX()+1):
if hGenPtPrompt.GetBinContent(iPt) > 0:
relStatUnc = hGenPtPrompt.GetBinError(iPt) / hGenPtPrompt.GetBinContent(iPt)
ptCent = hGenPtPrompt.GetBinCenter(iPt)
hGenPtPrompt.SetBinContent(iPt, hGenPtPrompt.GetBinContent(iPt) * sPtWeights(ptCent))
hGenPtPrompt.SetBinError(iPt, hGenPtPrompt.GetBinContent(iPt) * relStatUnc)
hGenPtPrompt.SetName(f'hPromptGenPt_{ptLowLabel:.0f}_{ptHighLabel:.0f}')
hGenPtFD = sparseGen['GenFD'].Projection(0)
hGenPtFD.Sumw2()
if args.ptweights or args.ptweightsB:
for iPt in range(1, hGenPtFD.GetNbinsX()+1):
if hGenPtFD.GetBinContent(iPt) > 0:
relStatUnc = hGenPtFD.GetBinError(iPt) / hGenPtFD.GetBinContent(iPt)
ptCent = hGenPtFD.GetBinCenter(iPt)
hGenPtFD.SetBinContent(iPt, hGenPtFD.GetBinContent(iPt) * sPtWeightsDfromB(ptCent))
hGenPtFD.SetBinError(iPt, hGenPtFD.GetBinContent(iPt) * relStatUnc)
hGenPtFD.SetName(f'hFDGenPt_{ptLowLabel:.0f}_{ptHighLabel:.0f}')
promptGenList.append(hGenPtPrompt)
FDGenList.append(hGenPtFD)
# reco histos from trees
dataFramePromptSel = dataFramePrompt.astype(float).query(cuts)
dataFrameFDSel = dataFrameFD.astype(float).query(cuts)
hPtPrompt = TH1F(f'hPromptPt_{ptLowLabel:.0f}_{ptHighLabel:.0f}', '', nPtBins, ptLimLow, ptLimHigh)
hInvMassPrompt = TH1F(f'hPromptMass_{ptLowLabel:.0f}_{ptHighLabel:.0f}', '', massBins, massLimLow, massLimHigh)
hPtFD = TH1F(f'hFDPt_{ptLowLabel:.0f}_{ptHighLabel:.0f}', '', nPtBins, ptLimLow, ptLimHigh)
hInvMassFD = TH1F(f'hFDMass_{ptLowLabel:.0f}_{ptHighLabel:.0f}', '', massBins, massLimLow, massLimHigh)
if args.ptweights or args.multweights:
hTmp = hPtPrompt.Clone('hTmp') # for stat unc
whichWeighs = 'pt_weights' if args.ptweights else 'mult_weights'
for value, weight in zip(dataFramePromptSel['pt_cand'].to_numpy(),
dataFramePromptSel[whichWeighs].to_numpy()):
hTmp.Fill(value)
hPtPrompt.Fill(value, weight)
for iPt in range(1, hTmp.GetNbinsX()+1):
if hTmp.GetBinContent(iPt) == 0.:
hPtPrompt.SetBinError(iPt, 0.)
else:
hPtPrompt.SetBinError(iPt, 1./np.sqrt(hTmp.GetBinContent(iPt))*hPtPrompt.GetBinContent(iPt))
else:
for value in dataFramePromptSel['pt_cand'].to_numpy():
hPtPrompt.Fill(value)
hPtPrompt.Sumw2()
for mass in dataFramePromptSel['inv_mass'].to_numpy():
hInvMassPrompt.Fill(mass)
if args.ptweightsB or args.ptweights or args.multweights:
hTmp = hPtFD.Clone('hTmp') # for stat unc
whichWeighs = 'pt_weights' if (args.ptweightsB or args.ptweights) else 'mult_weights'
for value, weight in zip(dataFrameFDSel['pt_cand'].to_numpy(),
dataFrameFDSel[whichWeighs].to_numpy()):
hTmp.Fill(value)
hPtFD.Fill(value, weight)
for iPt in range(1, hTmp.GetNbinsX()+1):
if hTmp.GetBinContent(iPt) == 0.:
hPtFD.SetBinError(iPt, 0.)
else:
hPtFD.SetBinError(iPt, 1./np.sqrt(hTmp.GetBinContent(iPt))*hPtFD.GetBinContent(iPt))
else:
for value in dataFrameFDSel['pt_cand'].to_numpy():
hPtFD.Fill(value)
hPtFD.Sumw2()
for mass in dataFrameFDSel['inv_mass'].to_numpy():
hInvMassFD.Fill(mass)
promptDict['InvMass'].append(hInvMassPrompt)
promptDict['Pt'].append(hPtPrompt)
FDDict['InvMass'].append(hInvMassFD)
FDDict['Pt'].append(hPtFD)
outFile.cd()
hGenPtPrompt.Write()
hGenPtFD.Write()
hPtPrompt.Write()
hInvMassPrompt.Write()
hPtFD.Write()
hInvMassFD.Write()
# merge adiacent pt bin histograms
for iPt in range(0, len(cutVars['Pt']['min']) - 1):
ptLowLabel = cutVars['Pt']['min'][iPt] * 10
ptHighLabel = cutVars['Pt']['max'][iPt+1] * 10
for iVar in ('InvMass', 'Pt'):
varName = 'Pt' if iVar == 'Pt' else 'Mass'
hPromptMerged = MergeHists([promptDict[iVar][iPt], promptDict[iVar][iPt+1]])
hPromptMerged.SetName(f'hPrompt{varName}_{ptLowLabel:.0f}_{ptHighLabel:.0f}')
hPromptMerged.Write()
hFDMerged = MergeHists([FDDict['Pt'][iPt], FDDict['Pt'][iPt+1]])
hFDMerged.SetName(f'hFD{varName}_{ptLowLabel:.0f}_{ptHighLabel:.0f}')
hFDMerged.Write()
hPtPromptGenMerged = MergeHists([promptGenList[iPt], promptGenList[iPt+1]])
hPtPromptGenMerged.SetName(f'hPromptGenPt_{ptLowLabel:.0f}_{ptHighLabel:.0f}')
hPtPromptGenMerged.Write()
hPtFDGenMerged = MergeHists([FDGenList[iPt], FDGenList[iPt+1]])
hPtFDGenMerged.SetName(f'hFDGenPt_{ptLowLabel:.0f}_{ptHighLabel:.0f}')
hPtFDGenMerged.Write()
else:
dataFrame = LoadDfFromRootOrParquet(inputCfg['tree']['filenameAll'], inputCfg['tree']['dirname'],
inputCfg['tree']['treename'])
for (cuts, ptMin, ptMax) in zip(selToApply, cutVars['Pt']['min'], cutVars['Pt']['max']):
print(f'Projecting distributions for {ptMin:.1f} < pT < {ptMax:.1f} GeV/c')
ptLowLabel = ptMin * 10
ptHighLabel = ptMax * 10
dataFrameSel = dataFrame.astype(float).query(cuts)
hPt = TH1F(f'hPt_{ptLowLabel:.0f}_{ptHighLabel:.0f}', '', nPtBins, ptLimLow, ptLimHigh)
hInvMass = TH1F(f'hMass_{ptLowLabel:.0f}_{ptHighLabel:.0f}', '', massBins, massLimLow, massLimHigh)
for pt in dataFrameSel['pt_cand'].to_numpy():
hPt.Fill(pt)
for mass in dataFrameSel['inv_mass'].to_numpy():
hInvMass.Fill(mass)
allDict['InvMass'].append(hInvMass)
allDict['Pt'].append(hPt)
outFile.cd()
hPt.Write()
hInvMass.Write()
# merge adiacent pt bin histograms
for iPt in range(0, len(cutVars['Pt']['min']) - 1):
ptLowLabel = cutVars['Pt']['min'][iPt] * 10
ptHighLabel = cutVars['Pt']['max'][iPt+1] * 10
hPtMerged = MergeHists([allDict['Pt'][iPt], allDict['Pt'][iPt+1]])
hPtMerged.SetName(f'hPt_{ptLowLabel:.0f}_{ptHighLabel:.0f}')
hPtMerged.Write()
hInvMassMerged = MergeHists([allDict['InvMass'][iPt], allDict['InvMass'][iPt+1]])
hInvMassMerged.SetName(f'hMass_{ptLowLabel:.0f}_{ptHighLabel:.0f}')
hInvMassMerged.Write()
# merge all pT bins
ptLowLabel = cutVars['Pt']['min'][0] * 10
ptHighLabel = cutVars['Pt']['max'][-1] * 10
for iVar in ('InvMass', 'Pt'):
varName = 'Pt' if iVar == 'Pt' else 'Mass'
if not isMC:
hAllMergedAllPt = MergeHists(allDict[iVar])
hAllMergedAllPt.SetName(f'h{varName}_{ptLowLabel:.0f}_{ptHighLabel:.0f}')
hAllMergedAllPt.Write()
else:
hPromptMergedAllPt = MergeHists(promptDict[iVar])
hPromptMergedAllPt.SetName(f'hPrompt{varName}_{ptLowLabel:.0f}_{ptHighLabel:.0f}')
hPromptMergedAllPt.Write()
hFDMergedAllPt = MergeHists(FDDict[iVar])
hFDMergedAllPt.SetName(f'hFD{varName}_{ptLowLabel:.0f}_{ptHighLabel:.0f}')
hFDMergedAllPt.Write()
if isMC:
hPromptGenMergedAllPt = MergeHists(promptGenList)
hPromptGenMergedAllPt.SetName(f'hPromptGenPt_{ptLowLabel:.0f}_{ptHighLabel:.0f}')
hPromptGenMergedAllPt.Write()
hFDGenMergedAllPt = MergeHists(FDGenList)
hFDGenMergedAllPt.SetName(f'hFDGenPt_{ptLowLabel:.0f}_{ptHighLabel:.0f}')
hFDGenMergedAllPt.Write()
# normalisation
hEvForNorm = TH1F("hEvForNorm", ";;Number of events", 2, 0., 2.)
hEvForNorm.GetXaxis().SetBinLabel(1, "norm counter")
hEvForNorm.GetXaxis().SetBinLabel(2, "accepted events")
hEvForNorm.SetBinContent(1, normCounter.GetNEventsForNorm())
for iBin in range(1, hEv.GetNbinsX() + 1):
binLabel = hEv.GetXaxis().GetBinLabel(iBin)
if 'isEvSelected' in binLabel or 'accepted' in binLabel:
hEvForNorm.SetBinContent(2, hEv.GetBinContent(iBin))
break
outFile.cd()
hEvForNorm.Write()
outFile.Close()