forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
163 lines (148 loc) · 5.18 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import torch
import torch.nn as nn
from classify import evaluate_embeds
from label_utils import (
get_labeled_nodes_label_attribute,
remove_unseen_classes_from_training,
)
from model import GCN, RECT_L
from utils import load_data, process_classids, svd_feature
def main(args):
g, features, labels, train_mask, test_mask, n_classes, cuda = load_data(
args
)
# adopt any number of classes as the unseen classes (the first three classes by default)
removed_class = args.removed_class
if len(removed_class) > n_classes:
raise ValueError(
"unseen number is greater than the number of classes: {}".format(
len(removed_class)
)
)
for i in removed_class:
if i not in labels:
raise ValueError("class out of bounds: {}".format(i))
# remove these unseen classes from the training set, to construct the zero-shot label setting
train_mask_zs = remove_unseen_classes_from_training(
train_mask=train_mask, labels=labels, removed_class=removed_class
)
print(
"after removing the unseen classes, seen class labeled node num:",
sum(train_mask_zs).item(),
)
if args.model_opt == "RECT-L":
model = RECT_L(
g=g,
in_feats=args.n_hidden,
n_hidden=args.n_hidden,
activation=nn.PReLU(),
)
if cuda:
model.cuda()
features = svd_feature(features=features, d=args.n_hidden)
attribute_labels = get_labeled_nodes_label_attribute(
train_mask_zs=train_mask_zs,
labels=labels,
features=features,
cuda=cuda,
)
loss_fcn = nn.MSELoss(reduction="sum")
optimizer = torch.optim.Adam(
model.parameters(), lr=args.lr, weight_decay=args.weight_decay
)
for epoch in range(args.n_epochs):
model.train()
optimizer.zero_grad()
logits = model(features)
loss_train = loss_fcn(attribute_labels, logits[train_mask_zs])
print(
"Epoch {:d} | Train Loss {:.5f}".format(
epoch + 1, loss_train.item()
)
)
loss_train.backward()
optimizer.step()
model.eval()
embeds = model.embed(features)
elif args.model_opt == "GCN":
model = GCN(
g=g,
in_feats=features.shape[1],
n_hidden=args.n_hidden,
n_classes=n_classes - len(removed_class),
activation=nn.PReLU(),
dropout=args.dropout,
)
if cuda:
model.cuda()
loss_fcn = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(
model.parameters(), lr=args.lr, weight_decay=args.weight_decay
)
for epoch in range(args.n_epochs):
model.train()
logits = model(features)
labels_train = process_classids(labels_temp=labels[train_mask_zs])
loss_train = loss_fcn(logits[train_mask_zs], labels_train)
optimizer.zero_grad()
print(
"Epoch {:d} | Train Loss {:.5f}".format(
epoch + 1, loss_train.item()
)
)
loss_train.backward()
optimizer.step()
model.eval()
embeds = model.embed(features)
elif args.model_opt == "NodeFeats":
embeds = svd_feature(features)
# evaluate the quality of embedding results with the original balanced labels, to assess the model performance (as suggested in the paper)
res = evaluate_embeds(
features=embeds,
labels=labels,
train_mask=train_mask,
test_mask=test_mask,
n_classes=n_classes,
cuda=cuda,
)
print("Test Accuracy of {:s}: {:.4f}".format(args.model_opt, res))
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="MODEL")
parser.add_argument(
"--model-opt",
type=str,
default="RECT-L",
choices=["RECT-L", "GCN", "NodeFeats"],
help="model option",
)
parser.add_argument(
"--dataset",
type=str,
default="cora",
choices=["cora", "citeseer"],
help="dataset",
)
parser.add_argument(
"--dropout", type=float, default=0.0, help="dropout probability"
)
parser.add_argument("--gpu", type=int, default=0, help="gpu")
parser.add_argument(
"--removed-class",
type=int,
nargs="*",
default=[0, 1, 2],
help="remove the unseen classes",
)
parser.add_argument("--lr", type=float, default=1e-3, help="learning rate")
parser.add_argument(
"--n-epochs", type=int, default=200, help="number of training epochs"
)
parser.add_argument(
"--n-hidden", type=int, default=200, help="number of hidden gcn units"
)
parser.add_argument(
"--weight-decay", type=float, default=5e-4, help="Weight for L2 loss"
)
args = parser.parse_args()
main(args)