forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
grid_graph.py
70 lines (56 loc) · 1.88 KB
/
grid_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# author: xbresson
# code link: https://github.com/xbresson/CE7454_2019/blob/master/codes/labs_lecture14/lab01_ChebGCNs/lib/grid_graph.py
import numpy as np
import scipy.sparse # scipy.spatial.distance
import scipy.sparse.linalg
import sklearn
import sklearn.metrics
def grid_graph(grid_side, number_edges, metric):
"""Generate graph of a grid"""
z = grid(grid_side)
dist, idx = distance_sklearn_metrics(z, k=number_edges, metric=metric)
A = adjacency(dist, idx)
print("nb edges: ", A.nnz)
return A
def grid(m, dtype=np.float32):
"""Return coordinates of grid points"""
M = m**2
x = np.linspace(0, 1, m, dtype=dtype)
y = np.linspace(0, 1, m, dtype=dtype)
xx, yy = np.meshgrid(x, y)
z = np.empty((M, 2), dtype)
z[:, 0] = xx.reshape(M)
z[:, 1] = yy.reshape(M)
return z
def distance_sklearn_metrics(z, k=4, metric="euclidean"):
"""Compute pairwise distances"""
# d = sklearn.metrics.pairwise.pairwise_distances(z, metric=metric, n_jobs=-2)
d = sklearn.metrics.pairwise.pairwise_distances(z, metric=metric, n_jobs=1)
# k-NN
idx = np.argsort(d)[:, 1 : k + 1]
d.sort()
d = d[:, 1 : k + 1]
return d, idx
def adjacency(dist, idx):
"""Return adjacency matrix of a kNN graph"""
M, k = dist.shape
assert M, k == idx.shape
assert dist.min() >= 0
assert dist.max() <= 1
# Pairwise distances
sigma2 = np.mean(dist[:, -1]) ** 2
dist = np.exp(-(dist**2) / sigma2)
# Weight matrix
I = np.arange(0, M).repeat(k)
J = idx.reshape(M * k)
V = dist.reshape(M * k)
W = scipy.sparse.coo_matrix((V, (I, J)), shape=(M, M))
# No self-connections
W.setdiag(0)
# Undirected graph
bigger = W.T > W
W = W - W.multiply(bigger) + W.T.multiply(bigger)
assert W.nnz % 2 == 0
assert np.abs(W - W.T).mean() < 1e-10
assert type(W) is scipy.sparse.csr.csr_matrix
return W