forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
executable file
·157 lines (127 loc) · 4.03 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import dgl.function as fn
import numpy as np
import torch as th
import torch.nn as nn
import torch.nn.functional as F
def drop_node(feats, drop_rate, training):
n = feats.shape[0]
drop_rates = th.FloatTensor(np.ones(n) * drop_rate)
if training:
masks = th.bernoulli(1.0 - drop_rates).unsqueeze(1)
feats = masks.to(feats.device) * feats
else:
feats = feats * (1.0 - drop_rate)
return feats
class MLP(nn.Module):
def __init__(
self, nfeat, nhid, nclass, input_droprate, hidden_droprate, use_bn=False
):
super(MLP, self).__init__()
self.layer1 = nn.Linear(nfeat, nhid, bias=True)
self.layer2 = nn.Linear(nhid, nclass, bias=True)
self.input_dropout = nn.Dropout(input_droprate)
self.hidden_dropout = nn.Dropout(hidden_droprate)
self.bn1 = nn.BatchNorm1d(nfeat)
self.bn2 = nn.BatchNorm1d(nhid)
self.use_bn = use_bn
def reset_parameters(self):
self.layer1.reset_parameters()
self.layer2.reset_parameters()
def forward(self, x):
if self.use_bn:
x = self.bn1(x)
x = self.input_dropout(x)
x = F.relu(self.layer1(x))
if self.use_bn:
x = self.bn2(x)
x = self.hidden_dropout(x)
x = self.layer2(x)
return x
def GRANDConv(graph, feats, order):
"""
Parameters
-----------
graph: dgl.Graph
The input graph
feats: Tensor (n_nodes * feat_dim)
Node features
order: int
Propagation Steps
"""
with graph.local_scope():
"""Calculate Symmetric normalized adjacency matrix \hat{A}"""
degs = graph.in_degrees().float().clamp(min=1)
norm = th.pow(degs, -0.5).to(feats.device).unsqueeze(1)
graph.ndata["norm"] = norm
graph.apply_edges(fn.u_mul_v("norm", "norm", "weight"))
""" Graph Conv """
x = feats
y = 0 + feats
for i in range(order):
graph.ndata["h"] = x
graph.update_all(fn.u_mul_e("h", "weight", "m"), fn.sum("m", "h"))
x = graph.ndata.pop("h")
y.add_(x)
return y / (order + 1)
class GRAND(nn.Module):
r"""
Parameters
-----------
in_dim: int
Input feature size. i.e, the number of dimensions of: math: `H^{(i)}`.
hid_dim: int
Hidden feature size.
n_class: int
Number of classes.
S: int
Number of Augmentation samples
K: int
Number of Propagation Steps
node_dropout: float
Dropout rate on node features.
input_dropout: float
Dropout rate of the input layer of a MLP
hidden_dropout: float
Dropout rate of the hidden layer of a MLPx
batchnorm: bool, optional
If True, use batch normalization.
"""
def __init__(
self,
in_dim,
hid_dim,
n_class,
S=1,
K=3,
node_dropout=0.0,
input_droprate=0.0,
hidden_droprate=0.0,
batchnorm=False,
):
super(GRAND, self).__init__()
self.in_dim = in_dim
self.hid_dim = hid_dim
self.S = S
self.K = K
self.n_class = n_class
self.mlp = MLP(
in_dim, hid_dim, n_class, input_droprate, hidden_droprate, batchnorm
)
self.dropout = node_dropout
self.node_dropout = nn.Dropout(node_dropout)
def forward(self, graph, feats, training=True):
X = feats
S = self.S
if training: # Training Mode
output_list = []
for s in range(S):
drop_feat = drop_node(X, self.dropout, True) # Drop node
feat = GRANDConv(graph, drop_feat, self.K) # Graph Convolution
output_list.append(
th.log_softmax(self.mlp(feat), dim=-1)
) # Prediction
return output_list
else: # Inference Mode
drop_feat = drop_node(X, self.dropout, False)
X = GRANDConv(graph, drop_feat, self.K)
return th.log_softmax(self.mlp(X), dim=-1)