forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cycles.py
226 lines (166 loc) · 6.26 KB
/
cycles.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import os
import pickle
import random
import matplotlib.pyplot as plt
import networkx as nx
from torch.utils.data import Dataset
def get_previous(i, v_max):
if i == 0:
return v_max
else:
return i - 1
def get_next(i, v_max):
if i == v_max:
return 0
else:
return i + 1
def is_cycle(g):
size = g.num_nodes()
if size < 3:
return False
for node in range(size):
neighbors = g.successors(node)
if len(neighbors) != 2:
return False
if get_previous(node, size - 1) not in neighbors:
return False
if get_next(node, size - 1) not in neighbors:
return False
return True
def get_decision_sequence(size):
"""
Get the decision sequence for generating valid cycles with DGMG for teacher
forcing optimization.
"""
decision_sequence = []
for i in range(size):
decision_sequence.append(0) # Add node
if i != 0:
decision_sequence.append(0) # Add edge
decision_sequence.append(
i - 1
) # Set destination to be previous node.
if i == size - 1:
decision_sequence.append(0) # Add edge
decision_sequence.append(0) # Set destination to be the root.
decision_sequence.append(1) # Stop adding edge
decision_sequence.append(1) # Stop adding node
return decision_sequence
def generate_dataset(v_min, v_max, n_samples, fname):
samples = []
for _ in range(n_samples):
size = random.randint(v_min, v_max)
samples.append(get_decision_sequence(size))
with open(fname, "wb") as f:
pickle.dump(samples, f)
class CycleDataset(Dataset):
def __init__(self, fname):
super(CycleDataset, self).__init__()
with open(fname, "rb") as f:
self.dataset = pickle.load(f)
def __len__(self):
return len(self.dataset)
def __getitem__(self, index):
return self.dataset[index]
def collate_single(self, batch):
assert len(batch) == 1, "Currently we do not support batched training"
return batch[0]
def collate_batch(self, batch):
return batch
def dglGraph_to_adj_list(g):
adj_list = {}
for node in range(g.num_nodes()):
# For undirected graph. successors and
# predecessors are equivalent.
adj_list[node] = g.successors(node).tolist()
return adj_list
class CycleModelEvaluation(object):
def __init__(self, v_min, v_max, dir):
super(CycleModelEvaluation, self).__init__()
self.v_min = v_min
self.v_max = v_max
self.dir = dir
def rollout_and_examine(self, model, num_samples):
assert not model.training, "You need to call model.eval()."
num_total_size = 0
num_valid_size = 0
num_cycle = 0
num_valid = 0
plot_times = 0
adj_lists_to_plot = []
for i in range(num_samples):
sampled_graph = model()
if isinstance(sampled_graph, list):
# When the model is a batched implementation, a list of
# DGLGraph objects is returned. Note that with model(),
# we generate a single graph as with the non-batched
# implementation. We actually support batched generation
# during the inference so feel free to modify the code.
sampled_graph = sampled_graph[0]
sampled_adj_list = dglGraph_to_adj_list(sampled_graph)
adj_lists_to_plot.append(sampled_adj_list)
graph_size = sampled_graph.num_nodes()
valid_size = self.v_min <= graph_size <= self.v_max
cycle = is_cycle(sampled_graph)
num_total_size += graph_size
if valid_size:
num_valid_size += 1
if cycle:
num_cycle += 1
if valid_size and cycle:
num_valid += 1
if len(adj_lists_to_plot) >= 4:
plot_times += 1
fig, ((ax0, ax1), (ax2, ax3)) = plt.subplots(2, 2)
axes = {0: ax0, 1: ax1, 2: ax2, 3: ax3}
for i in range(4):
nx.draw_circular(
nx.from_dict_of_lists(adj_lists_to_plot[i]),
with_labels=True,
ax=axes[i],
)
plt.savefig(self.dir + "/samples/{:d}".format(plot_times))
plt.close()
adj_lists_to_plot = []
self.num_samples_examined = num_samples
self.average_size = num_total_size / num_samples
self.valid_size_ratio = num_valid_size / num_samples
self.cycle_ratio = num_cycle / num_samples
self.valid_ratio = num_valid / num_samples
def write_summary(self):
def _format_value(v):
if isinstance(v, float):
return "{:.4f}".format(v)
elif isinstance(v, int):
return "{:d}".format(v)
else:
return "{}".format(v)
statistics = {
"num_samples": self.num_samples_examined,
"v_min": self.v_min,
"v_max": self.v_max,
"average_size": self.average_size,
"valid_size_ratio": self.valid_size_ratio,
"cycle_ratio": self.cycle_ratio,
"valid_ratio": self.valid_ratio,
}
model_eval_path = os.path.join(self.dir, "model_eval.txt")
with open(model_eval_path, "w") as f:
for key, value in statistics.items():
msg = "{}\t{}\n".format(key, _format_value(value))
f.write(msg)
print("Saved model evaluation statistics to {}".format(model_eval_path))
class CyclePrinting(object):
def __init__(self, num_epochs, num_batches):
super(CyclePrinting, self).__init__()
self.num_epochs = num_epochs
self.num_batches = num_batches
self.batch_count = 0
def update(self, epoch, metrics):
self.batch_count = (self.batch_count) % self.num_batches + 1
msg = "epoch {:d}/{:d}, batch {:d}/{:d}".format(
epoch, self.num_epochs, self.batch_count, self.num_batches
)
for key, value in metrics.items():
msg += ", {}: {:4f}".format(key, value)
print(msg)