forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
151 lines (126 loc) · 3.97 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import math
import dgl.function as fn
import torch
import torch.nn as nn
import torch.nn.functional as F
def glorot(tensor):
if tensor is not None:
stdv = math.sqrt(6.0 / (tensor.size(-2) + tensor.size(-1)))
tensor.data.uniform_(-stdv, stdv)
def zeros(tensor):
if tensor is not None:
tensor.data.fill_(0)
class ARMAConv(nn.Module):
def __init__(
self,
in_dim,
out_dim,
num_stacks,
num_layers,
activation=None,
dropout=0.0,
bias=True,
):
super(ARMAConv, self).__init__()
self.in_dim = in_dim
self.out_dim = out_dim
self.K = num_stacks
self.T = num_layers
self.activation = activation
self.dropout = nn.Dropout(p=dropout)
# init weight
self.w_0 = nn.ModuleDict(
{
str(k): nn.Linear(in_dim, out_dim, bias=False)
for k in range(self.K)
}
)
# deeper weight
self.w = nn.ModuleDict(
{
str(k): nn.Linear(out_dim, out_dim, bias=False)
for k in range(self.K)
}
)
# v
self.v = nn.ModuleDict(
{
str(k): nn.Linear(in_dim, out_dim, bias=False)
for k in range(self.K)
}
)
# bias
if bias:
self.bias = nn.Parameter(
torch.Tensor(self.K, self.T, 1, self.out_dim)
)
else:
self.register_parameter("bias", None)
self.reset_parameters()
def reset_parameters(self):
for k in range(self.K):
glorot(self.w_0[str(k)].weight)
glorot(self.w[str(k)].weight)
glorot(self.v[str(k)].weight)
zeros(self.bias)
def forward(self, g, feats):
with g.local_scope():
init_feats = feats
# assume that the graphs are undirected and graph.in_degrees() is the same as graph.out_degrees()
degs = g.in_degrees().float().clamp(min=1)
norm = torch.pow(degs, -0.5).to(feats.device).unsqueeze(1)
output = []
for k in range(self.K):
feats = init_feats
for t in range(self.T):
feats = feats * norm
g.ndata["h"] = feats
g.update_all(fn.copy_u("h", "m"), fn.sum("m", "h"))
feats = g.ndata.pop("h")
feats = feats * norm
if t == 0:
feats = self.w_0[str(k)](feats)
else:
feats = self.w[str(k)](feats)
feats += self.dropout(self.v[str(k)](init_feats))
feats += self.v[str(k)](self.dropout(init_feats))
if self.bias is not None:
feats += self.bias[k][t]
if self.activation is not None:
feats = self.activation(feats)
output.append(feats)
return torch.stack(output).mean(dim=0)
class ARMA4NC(nn.Module):
def __init__(
self,
in_dim,
hid_dim,
out_dim,
num_stacks,
num_layers,
activation=None,
dropout=0.0,
):
super(ARMA4NC, self).__init__()
self.conv1 = ARMAConv(
in_dim=in_dim,
out_dim=hid_dim,
num_stacks=num_stacks,
num_layers=num_layers,
activation=activation,
dropout=dropout,
)
self.conv2 = ARMAConv(
in_dim=hid_dim,
out_dim=out_dim,
num_stacks=num_stacks,
num_layers=num_layers,
activation=activation,
dropout=dropout,
)
self.dropout = nn.Dropout(p=dropout)
def forward(self, g, feats):
feats = F.relu(self.conv1(g, feats))
feats = self.dropout(feats)
feats = self.conv2(g, feats)
return feats