forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
159 lines (140 loc) · 4.19 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import argparse
import time
import dgl
import mxnet as mx
import networkx as nx
import numpy as np
from dgl.data import (
CiteseerGraphDataset,
CoraGraphDataset,
PubmedGraphDataset,
register_data_args,
)
from mxnet import gluon
from tagcn import TAGCN
def evaluate(model, features, labels, mask):
pred = model(features).argmax(axis=1)
accuracy = ((pred == labels) * mask).sum() / mask.sum().asscalar()
return accuracy.asscalar()
def main(args):
# load and preprocess dataset
if args.dataset == "cora":
data = CoraGraphDataset()
elif args.dataset == "citeseer":
data = CiteseerGraphDataset()
elif args.dataset == "pubmed":
data = PubmedGraphDataset()
else:
raise ValueError("Unknown dataset: {}".format(args.dataset))
g = data[0]
if args.gpu < 0:
cuda = False
ctx = mx.cpu(0)
else:
cuda = True
ctx = mx.gpu(args.gpu)
g = g.to(ctx)
features = g.ndata["feat"]
labels = mx.nd.array(g.ndata["label"], dtype="float32", ctx=ctx)
train_mask = g.ndata["train_mask"]
val_mask = g.ndata["val_mask"]
test_mask = g.ndata["test_mask"]
in_feats = features.shape[1]
n_classes = data.num_labels
n_edges = data.graph.number_of_edges()
print(
"""----Data statistics------'
#Edges %d
#Classes %d
#Train samples %d
#Val samples %d
#Test samples %d"""
% (
n_edges,
n_classes,
train_mask.sum().asscalar(),
val_mask.sum().asscalar(),
test_mask.sum().asscalar(),
)
)
# add self loop
g = dgl.remove_self_loop(g)
g = dgl.add_self_loop(g)
# create TAGCN model
model = TAGCN(
g,
in_feats,
args.n_hidden,
n_classes,
args.n_layers,
mx.nd.relu,
args.dropout,
)
model.initialize(ctx=ctx)
n_train_samples = train_mask.sum().asscalar()
loss_fcn = gluon.loss.SoftmaxCELoss()
# use optimizer
print(model.collect_params())
trainer = gluon.Trainer(
model.collect_params(),
"adam",
{"learning_rate": args.lr, "wd": args.weight_decay},
)
# initialize graph
dur = []
for epoch in range(args.n_epochs):
if epoch >= 3:
t0 = time.time()
# forward
with mx.autograd.record():
pred = model(features)
loss = loss_fcn(pred, labels, mx.nd.expand_dims(train_mask, 1))
loss = loss.sum() / n_train_samples
loss.backward()
trainer.step(batch_size=1)
if epoch >= 3:
loss.asscalar()
dur.append(time.time() - t0)
acc = evaluate(model, features, labels, val_mask)
print(
"Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
"ETputs(KTEPS) {:.2f}".format(
epoch,
np.mean(dur),
loss.asscalar(),
acc,
n_edges / np.mean(dur) / 1000,
)
)
print()
acc = evaluate(model, features, labels, val_mask)
print("Test accuracy {:.2%}".format(acc))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="TAGCN")
register_data_args(parser)
parser.add_argument(
"--dropout", type=float, default=0.5, help="dropout probability"
)
parser.add_argument("--gpu", type=int, default=-1, help="gpu")
parser.add_argument("--lr", type=float, default=1e-2, help="learning rate")
parser.add_argument(
"--n-epochs", type=int, default=200, help="number of training epochs"
)
parser.add_argument(
"--n-hidden", type=int, default=16, help="number of hidden tagcn units"
)
parser.add_argument(
"--n-layers", type=int, default=1, help="number of hidden tagcn layers"
)
parser.add_argument(
"--weight-decay", type=float, default=5e-4, help="Weight for L2 loss"
)
parser.add_argument(
"--self-loop",
action="store_true",
help="graph self-loop (default=False)",
)
parser.set_defaults(self_loop=False)
args = parser.parse_args()
print(args)
main(args)