forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_batch_neg.py
434 lines (375 loc) Β· 19.4 KB
/
train_batch_neg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import random
import time
from functools import partial
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ann_util import build_index
from batch_negative.model import SemanticIndexBatchNeg, SemanticIndexCacheNeg
from data import (
convert_example,
create_dataloader,
gen_id2corpus,
gen_text_file,
read_text_pair,
)
from paddlenlp.data import Pad, Tuple
from paddlenlp.datasets import MapDataset, load_dataset
from paddlenlp.transformers import AutoModel, AutoTokenizer, LinearDecayWithWarmup
# yapf: disable
parser = argparse.ArgumentParser()
parser.add_argument("--save_dir", default='./checkpoint', type=str, help="The output directory where the model checkpoints will be written.")
parser.add_argument("--max_seq_length", default=512, type=int, help="The maximum total input sequence length after tokenization. Sequences longer than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--batch_size", default=32, type=int, help="Batch size per GPU/CPU for training.")
parser.add_argument('--model_name_or_path', default="rocketqa-zh-base-query-encoder", help="The pretrained model used for training")
parser.add_argument("--output_emb_size", default=256, type=int, help="output_embedding_size")
parser.add_argument("--learning_rate", default=5E-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
parser.add_argument("--epochs", default=10, type=int, help="Total number of training epochs to perform.")
parser.add_argument("--warmup_proportion", default=0.0, type=float, help="Linear warmup proportion over the training process.")
parser.add_argument("--init_from_ckpt", type=str, default=None, help="The path of checkpoint to be loaded.")
parser.add_argument("--seed", type=int, default=1000, help="random seed for initialization")
parser.add_argument('--device', choices=['cpu', 'gpu'], default="cpu", help="Select which device to train model, defaults to gpu.")
parser.add_argument('--save_steps', type=int, default=10000, help="Interval steps to save checkpoint")
parser.add_argument('--log_steps', type=int, default=10, help="Interval steps to print log")
parser.add_argument("--train_set_file", type=str, default='./recall/train.csv', help="The full path of train_set_file.")
parser.add_argument("--dev_set_file", type=str, default='./recall/dev.csv', help="The full path of dev_set_file.")
parser.add_argument("--margin", default=0.2, type=float, help="Margin between pos_sample and neg_samples")
parser.add_argument("--scale", default=30, type=int, help="Scale for pair-wise margin_rank_loss")
parser.add_argument("--corpus_file", type=str, default='./recall/corpus.csv', help="The full path of input file")
parser.add_argument("--similar_text_pair_file", type=str, default='./recall/dev.csv', help="The full path of similar text pair file")
parser.add_argument("--recall_result_dir", type=str, default='./recall_result_dir', help="The full path of recall result file to save")
parser.add_argument("--recall_result_file", type=str, default='recall_result_init.txt', help="The file name of recall result")
parser.add_argument("--recall_num", default=50, type=int, help="Recall number for each query from Ann index.")
parser.add_argument("--hnsw_m", default=100, type=int, help="Recall number for each query from Ann index.")
parser.add_argument("--hnsw_ef", default=100, type=int, help="Recall number for each query from Ann index.")
parser.add_argument("--hnsw_max_elements", default=1000000, type=int, help="Recall number for each query from Ann index.")
parser.add_argument("--evaluate_result", type=str, default='evaluate_result.txt', help="evaluate_result")
parser.add_argument('--evaluate', action='store_true', help='whether evaluate while training')
parser.add_argument("--max_grad_norm", type=float, default=5.0, help="max grad norm for global norm clip")
parser.add_argument("--use_amp", action="store_true", help="Whether to use AMP.")
parser.add_argument("--amp_loss_scale", default=32768, type=float, help="The value of scale_loss for fp16. This is only used for AMP training.")
parser.add_argument("--use_recompute", action='store_true', help="Using the recompute to scale up the batch size and save the memory.")
parser.add_argument("--use_gradient_cache", action='store_true', help="Using the gradient cache to scale up the batch size and save the memory.")
parser.add_argument("--chunk_numbers", type=int, default=50, help="The number of the chunks for model")
args = parser.parse_args()
# yapf: enable
def set_seed(seed):
"""sets random seed"""
random.seed(seed)
np.random.seed(seed)
paddle.seed(seed)
def recall(rs, N=10):
recall_flags = [np.sum(r[0:N]) for r in rs]
return np.mean(recall_flags)
@paddle.no_grad()
def evaluate(model, corpus_data_loader, query_data_loader, recall_result_file, text_list, id2corpus):
# Load pretrained semantic model
inner_model = model._layers
final_index = build_index(args, corpus_data_loader, inner_model)
query_embedding = inner_model.get_semantic_embedding(query_data_loader)
with open(recall_result_file, "w", encoding="utf-8") as f:
for batch_index, batch_query_embedding in enumerate(query_embedding):
recalled_idx, cosine_sims = final_index.knn_query(batch_query_embedding.numpy(), args.recall_num)
batch_size = len(cosine_sims)
for row_index in range(batch_size):
text_index = args.batch_size * batch_index + row_index
for idx, doc_idx in enumerate(recalled_idx[row_index]):
f.write(
"{}\t{}\t{}\n".format(
text_list[text_index]["text"], id2corpus[doc_idx], 1.0 - cosine_sims[row_index][idx]
)
)
text2similar = {}
with open(args.similar_text_pair_file, "r", encoding="utf-8") as f:
for line in f:
text, similar_text = line.rstrip().split("\t")
text2similar[text] = similar_text
rs = []
with open(recall_result_file, "r", encoding="utf-8") as f:
relevance_labels = []
for index, line in enumerate(f):
if index % args.recall_num == 0 and index != 0:
rs.append(relevance_labels)
relevance_labels = []
text, recalled_text, cosine_sim = line.rstrip().split("\t")
if text == recalled_text:
continue
if text2similar[text] == recalled_text:
relevance_labels.append(1)
else:
relevance_labels.append(0)
recall_N = []
recall_num = [1, 5, 10, 20, 50]
for topN in recall_num:
R = round(100 * recall(rs, N=topN), 3)
recall_N.append(str(R))
evaluate_result_file = os.path.join(args.recall_result_dir, args.evaluate_result)
result = open(evaluate_result_file, "a")
res = []
timestamp = time.strftime("%Y%m%d-%H%M%S", time.localtime())
res.append(timestamp)
for key, val in zip(recall_num, recall_N):
print("recall@{}={}".format(key, val))
res.append(str(val))
result.write("\t".join(res) + "\n")
return float(recall_N[1])
def train(
train_data_loader,
model,
optimizer,
lr_scheduler,
rank,
corpus_data_loader,
query_data_loader,
recall_result_file,
text_list,
id2corpus,
tokenizer,
):
global_step = 0
best_recall = 0.0
tic_train = time.time()
for epoch in range(1, args.epochs + 1):
for step, batch in enumerate(train_data_loader, start=1):
query_input_ids, query_token_type_ids, title_input_ids, title_token_type_ids = batch
loss = model(
query_input_ids=query_input_ids,
title_input_ids=title_input_ids,
query_token_type_ids=query_token_type_ids,
title_token_type_ids=title_token_type_ids,
)
global_step += 1
if global_step % args.log_steps == 0 and rank == 0:
print(
"global step %d, epoch: %d, batch: %d, loss: %.5f, speed: %.2f step/s"
% (global_step, epoch, step, loss, args.log_steps / (time.time() - tic_train))
)
tic_train = time.time()
loss.backward()
optimizer.step()
lr_scheduler.step()
optimizer.clear_grad()
if not args.evaluate:
if global_step % args.save_steps == 0 and rank == 0:
save_dir = os.path.join(args.save_dir, "model_%d" % global_step)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
save_param_path = os.path.join(save_dir, "model_state.pdparams")
paddle.save(model.state_dict(), save_param_path)
tokenizer.save_pretrained(save_dir)
if args.evaluate and rank == 0:
print("evaluating")
recall_5 = evaluate(model, corpus_data_loader, query_data_loader, recall_result_file, text_list, id2corpus)
if recall_5 > best_recall:
best_recall = recall_5
save_dir = os.path.join(args.save_dir, "model_best")
if not os.path.exists(save_dir):
os.makedirs(save_dir)
save_param_path = os.path.join(save_dir, "model_state.pdparams")
paddle.save(model.state_dict(), save_param_path)
tokenizer.save_pretrained(save_dir)
with open(os.path.join(save_dir, "train_result.txt"), "a", encoding="utf-8") as fp:
fp.write("epoch=%d, global_step: %d, recall: %s\n" % (epoch, global_step, recall_5))
def gradient_cache_train(train_data_loader, model, optimizer, lr_scheduler, rank, tokenizer):
if args.use_amp:
scaler = paddle.amp.GradScaler(init_loss_scaling=args.amp_loss_scale)
if args.batch_size % args.chunk_numbers == 0:
chunk_numbers = args.chunk_numbers
else:
raise Exception(
f" Batch_size {args.batch_size} must divides chunk_numbers {args.chunk_numbers} without producing a remainder "
)
def split(inputs, chunk_numbers, axis=0):
if inputs.shape[0] % chunk_numbers == 0:
return paddle.split(inputs, chunk_numbers, axis=0)
else:
return paddle.split(inputs, inputs.shape[0], axis=0)
global_step = 0
tic_train = time.time()
for epoch in range(1, args.epochs + 1):
for step, batch in enumerate(train_data_loader, start=1):
# Separate large batches into several sub batches
chunked_x = [split(t, chunk_numbers, axis=0) for t in batch]
sub_batchs = [list(s) for s in zip(*chunked_x)]
all_grads = []
all_CUDA_rnd_state = []
all_query = []
all_title = []
for sub_batch in sub_batchs:
all_reps = []
all_labels = []
(
sub_query_input_ids,
sub_query_token_type_ids,
sub_title_input_ids,
sub_title_token_type_ids,
) = sub_batch
with paddle.amp.auto_cast(args.use_amp, custom_white_list=["layer_norm", "softmax", "gelu"]):
with paddle.no_grad():
sub_CUDA_rnd_state = paddle.framework.random.get_cuda_rng_state()
all_CUDA_rnd_state.append(sub_CUDA_rnd_state)
sub_cosine_sim, sub_label, query_embedding, title_embedding = model(
query_input_ids=sub_query_input_ids,
title_input_ids=sub_title_input_ids,
query_token_type_ids=sub_query_token_type_ids,
title_token_type_ids=sub_title_token_type_ids,
)
all_reps.append(sub_cosine_sim)
all_labels.append(sub_label)
all_title.append(title_embedding)
all_query.append(query_embedding)
model_reps = paddle.concat(all_reps, axis=0)
model_title = paddle.concat(all_title)
model_query = paddle.concat(all_query)
model_title = model_title.detach()
model_query = model_query.detach()
model_query.stop_gradient = False
model_title.stop_gradient = False
model_reps.stop_gradient = False
model_label = paddle.concat(all_labels, axis=0)
loss = F.cross_entropy(input=model_reps, label=model_label)
loss.backward()
# Store gradients
all_grads.append(model_reps.grad)
for sub_batch, CUDA_state, grad in zip(sub_batchs, all_CUDA_rnd_state, all_grads):
(
sub_query_input_ids,
sub_query_token_type_ids,
sub_title_input_ids,
sub_title_token_type_ids,
) = sub_batch
paddle.framework.random.set_cuda_rng_state(CUDA_state)
# Recompute the forward propagation
sub_cosine_sim, sub_label, query_embedding, title_embedding = model(
query_input_ids=sub_query_input_ids,
title_input_ids=sub_title_input_ids,
query_token_type_ids=sub_query_token_type_ids,
title_token_type_ids=sub_title_token_type_ids,
)
# Chain rule
surrogate = paddle.dot(sub_cosine_sim, grad)
# Backward propagation
if args.use_amp:
scaled = scaler.scale(surrogate)
scaled.backward()
else:
surrogate.backward()
# Update model parameters
if args.use_amp:
scaler.minimize(optimizer, scaled)
else:
optimizer.step()
global_step += 1
if global_step % args.log_steps == 0 and rank == 0:
print(
"global step %d, epoch: %d, batch: %d, loss: %.5f, speed: %.2f step/s"
% (global_step, epoch, step, loss, args.log_steps / (time.time() - tic_train))
)
tic_train = time.time()
lr_scheduler.step()
optimizer.clear_grad()
if global_step % args.save_steps == 0 and rank == 0:
save_dir = os.path.join(args.save_dir, "model_%d" % global_step)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
save_param_path = os.path.join(save_dir, "model_state.pdparams")
paddle.save(model.state_dict(), save_param_path)
tokenizer.save_pretrained(save_dir)
def do_train():
paddle.set_device(args.device)
rank = paddle.distributed.get_rank()
if paddle.distributed.get_world_size() > 1:
paddle.distributed.init_parallel_env()
set_seed(args.seed)
train_ds = load_dataset(read_text_pair, data_path=args.train_set_file, lazy=False)
pretrained_model = AutoModel.from_pretrained(args.model_name_or_path, enable_recompute=args.use_recompute)
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
trans_func = partial(convert_example, tokenizer=tokenizer, max_seq_length=args.max_seq_length)
batchify_fn = lambda samples, fn=Tuple( # noqa: E731
Pad(axis=0, pad_val=tokenizer.pad_token_id, dtype="int64"), # query_input
Pad(axis=0, pad_val=tokenizer.pad_token_type_id, dtype="int64"), # query_segment
Pad(axis=0, pad_val=tokenizer.pad_token_id, dtype="int64"), # title_input
Pad(axis=0, pad_val=tokenizer.pad_token_type_id, dtype="int64"), # title_segment
): [data for data in fn(samples)]
train_data_loader = create_dataloader(
train_ds, mode="train", batch_size=args.batch_size, batchify_fn=batchify_fn, trans_fn=trans_func
)
if args.use_gradient_cache:
model = SemanticIndexCacheNeg(
pretrained_model, margin=args.margin, scale=args.scale, output_emb_size=args.output_emb_size
)
else:
model = SemanticIndexBatchNeg(
pretrained_model, margin=args.margin, scale=args.scale, output_emb_size=args.output_emb_size
)
if args.init_from_ckpt and os.path.isfile(args.init_from_ckpt):
state_dict = paddle.load(args.init_from_ckpt)
model.set_dict(state_dict)
print("warmup from:{}".format(args.init_from_ckpt))
model = paddle.DataParallel(model)
batchify_fn_dev = lambda samples, fn=Tuple( # noqa: E731
Pad(axis=0, pad_val=tokenizer.pad_token_id, dtype="int64"), # text_input
Pad(axis=0, pad_val=tokenizer.pad_token_type_id, dtype="int64"), # text_segment
): [data for data in fn(samples)]
id2corpus = gen_id2corpus(args.corpus_file)
# convert_example function's input must be dict
corpus_list = [{idx: text} for idx, text in id2corpus.items()]
corpus_ds = MapDataset(corpus_list)
corpus_data_loader = create_dataloader(
corpus_ds, mode="predict", batch_size=args.batch_size, batchify_fn=batchify_fn_dev, trans_fn=trans_func
)
text_list, text2similar_text = gen_text_file(args.similar_text_pair_file)
query_ds = MapDataset(text_list)
query_data_loader = create_dataloader(
query_ds, mode="predict", batch_size=args.batch_size, batchify_fn=batchify_fn_dev, trans_fn=trans_func
)
if not os.path.exists(args.recall_result_dir):
os.mkdir(args.recall_result_dir)
recall_result_file = os.path.join(args.recall_result_dir, args.recall_result_file)
num_training_steps = len(train_data_loader) * args.epochs
lr_scheduler = LinearDecayWithWarmup(args.learning_rate, num_training_steps, args.warmup_proportion)
# Generate parameter names needed to perform weight decay.
# All bias and LayerNorm parameters are excluded.
decay_params = [p.name for n, p in model.named_parameters() if not any(nd in n for nd in ["bias", "norm"])]
optimizer = paddle.optimizer.AdamW(
learning_rate=lr_scheduler,
parameters=model.parameters(),
weight_decay=args.weight_decay,
apply_decay_param_fun=lambda x: x in decay_params,
grad_clip=nn.ClipGradByGlobalNorm(args.max_grad_norm),
)
if args.use_gradient_cache:
gradient_cache_train(train_data_loader, model, optimizer, lr_scheduler, rank, tokenizer)
else:
train(
train_data_loader,
model,
optimizer,
lr_scheduler,
rank,
corpus_data_loader,
query_data_loader,
recall_result_file,
text_list,
id2corpus,
tokenizer,
)
if __name__ == "__main__":
do_train()