forked from onnx/onnx-tensorrt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
trt_utils.hpp
162 lines (148 loc) · 3.93 KB
/
trt_utils.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
/*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include "Status.hpp"
#include "TensorOrWeights.hpp"
#include "onnx2trt.hpp"
#include <NvInfer.h>
#include <algorithm>
#include <cassert>
#include <cmath>
namespace onnx2trt
{
inline int getDtypeSize(nvinfer1::DataType trtDtype)
{
switch (trtDtype)
{
case nvinfer1::DataType::kFLOAT: return 4;
case nvinfer1::DataType::kINT8: return 1;
case nvinfer1::DataType::kHALF: return 2;
case nvinfer1::DataType::kINT32:
return 4;
// TRT does not support booleans as a native type, so we treat them like int32 values.
case nvinfer1::DataType::kBOOL:
return 4;
// TODO: Some sort of error handling
default: return -1;
}
}
inline nvinfer1::Dims insert_dim(nvinfer1::Dims const& dims, int idx, int value)
{
assert(idx < dims.nbDims + 1);
nvinfer1::Dims new_dims;
new_dims.nbDims = dims.nbDims + 1;
for (int i = 0; i < idx; ++i)
{
new_dims.d[i] = dims.d[i];
}
new_dims.d[idx] = value;
for (int i = idx + 1; i < new_dims.nbDims; ++i)
{
new_dims.d[i] = dims.d[i - 1];
}
return new_dims;
}
inline nvinfer1::Dims remove_dim(nvinfer1::Dims const& dims, int idx)
{
assert(idx < dims.nbDims);
nvinfer1::Dims new_dims;
new_dims.nbDims = dims.nbDims - 1;
for (int i = 0; i < idx; ++i)
{
new_dims.d[i] = dims.d[i];
}
for (int i = idx; i < new_dims.nbDims; ++i)
{
new_dims.d[i] = dims.d[i + 1];
}
// Special case for scalar result (i.e., there was only one dim originally)
if (new_dims.nbDims == 0)
{
new_dims.nbDims = 1;
new_dims.d[0] = 1;
}
return new_dims;
}
// Adds unitary dimensions on the left
inline nvinfer1::Dims expand_dims(nvinfer1::Dims const& dims, int ndim_new)
{
assert(dims.nbDims <= ndim_new);
nvinfer1::Dims new_dims;
new_dims.nbDims = ndim_new;
int j = 0;
for (; j < ndim_new - dims.nbDims; ++j)
{
new_dims.d[j] = 1;
}
for (int i = 0; i < dims.nbDims; ++i, ++j)
{
new_dims.d[j] = dims.d[i];
}
return new_dims;
}
inline nvinfer1::Permutation remove_first_dim(nvinfer1::Permutation const& perm)
{
assert(perm.order[0] == 0);
nvinfer1::Permutation new_perm;
int ndim = nvinfer1::Dims::MAX_DIMS;
for (int i = 0; i < ndim - 1; ++i)
{
new_perm.order[i] = perm.order[i + 1] - 1;
}
return new_perm;
}
inline nvinfer1::DimsHW operator-(nvinfer1::DimsHW dims)
{
return nvinfer1::DimsHW(-dims.h(), -dims.w());
}
// Note: These are used for checking beg_padding == end_padding
inline bool operator==(nvinfer1::Dims const& a, nvinfer1::Dims const& b)
{
if (a.nbDims != b.nbDims)
{
return false;
}
for (int i = 0; i < a.nbDims; ++i)
{
if (a.d[i] != b.d[i])
{
return false;
}
}
return true;
}
inline bool operator!=(nvinfer1::Dims const& a, nvinfer1::Dims const& b)
{
return !(a == b);
}
inline TensorOrWeights identity(IImporterContext* ctx, TensorOrWeights input)
{
if (input.is_weights())
{
return input;
}
else
{
auto* layer = ctx->network()->addIdentity(input.tensor());
if (!layer)
{
return nullptr;
}
return layer->getOutput(0);
}
}
inline ::ONNX_NAMESPACE::TensorProto_DataType trtDataTypeToONNX(nvinfer1::DataType dt)
{
switch (dt)
{
case nvinfer1::DataType::kFLOAT: return ::ONNX_NAMESPACE::TensorProto::FLOAT;
case nvinfer1::DataType::kHALF: return ::ONNX_NAMESPACE::TensorProto::FLOAT16;
case nvinfer1::DataType::kINT32: return ::ONNX_NAMESPACE::TensorProto::INT32;
case nvinfer1::DataType::kINT8: return ::ONNX_NAMESPACE::TensorProto::INT8;
case nvinfer1::DataType::kBOOL: return ::ONNX_NAMESPACE::TensorProto::BOOL;
default: return ::ONNX_NAMESPACE::TensorProto_DataType_UNDEFINED;
}
throw std::runtime_error{"Unreachable"};
}
} // namespace onnx2trt