forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_utils.py
37 lines (29 loc) · 1.29 KB
/
test_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test utilities for image classification tasks."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
def trivial_model(num_classes):
"""Trivial model for ImageNet dataset."""
input_shape = (224, 224, 3)
img_input = tf.keras.layers.Input(shape=input_shape)
x = tf.keras.layers.Lambda(
lambda x: tf.keras.backend.reshape(x, [-1, 224 * 224 * 3]),
name='reshape')(img_input)
x = tf.keras.layers.Dense(1, name='fc1')(x)
x = tf.keras.layers.Dense(num_classes, name='fc1000')(x)
x = tf.keras.layers.Activation('softmax', dtype='float32')(x)
return tf.keras.models.Model(img_input, x, name='trivial')