forked from BIGPPWONG/idcardocr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
idcardocr.py
551 lines (509 loc) · 23.7 KB
/
idcardocr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
# -*- coding: utf-8 -*-
from PIL import Image
import pytesseract
import cv2
import numpy as np
import re
from multiprocessing import Pool, Queue, Lock, Process, freeze_support
import time
#pytesseract.pytesseract.tesseract_cmd = 'C:\\Program Files (x86)\\Tesseract-OCR\\tesseract.exe'
x = 1280.00 / 3840.00
pixel_x = int(x * 3840)
print(x, pixel_x)
#mode0:识别姓名,出生日期,身份证号; mode1:识别所有信息
def idcardocr(imgname, mode=1):
print(u'进入身份证光学识别流程...')
if mode==1:
# generate_mask(x)
img_data_gray, img_org = img_resize_gray(imgname)
result_dict = dict()
name_pic = find_name(img_data_gray, img_org)
# showimg(name_pic)
# print 'name'
result_dict['name'] = get_name(name_pic)
# print result_dict['name']
sex_pic = find_sex(img_data_gray, img_org)
# showimg(sex_pic)
# print 'sex'
result_dict['sex'] = get_sex(sex_pic)
# print result_dict['sex']
nation_pic = find_nation(img_data_gray, img_org)
# showimg(nation_pic)
# print 'nation'
result_dict['nation'] = get_nation(nation_pic)
# print result_dict['nation']
address_pic = find_address(img_data_gray, img_org)
# showimg(address_pic)
# print 'address'
result_dict['address'] = get_address(address_pic)
# print result_dict['address']
idnum_pic = find_idnum(img_data_gray, img_org)
# showimg(idnum_pic)
# print 'idnum'
result_dict['idnum'], result_dict['birth'] = get_idnum_and_birth(idnum_pic)
# print result_dict['idnum']
elif mode==0:
# generate_mask(x)
img_data_gray, img_org = img_resize_gray(imgname)
result_dict = dict()
name_pic = find_name(img_data_gray, img_org)
# showimg(name_pic)
# print 'name'
result_dict['name'] = get_name(name_pic)
# print result_dict['name']
idnum_pic = find_idnum(img_data_gray, img_org)
# showimg(idnum_pic)
# print 'idnum'
result_dict['idnum'], result_dict['birth'] = get_idnum_and_birth(idnum_pic)
result_dict['sex']=''
result_dict['nation']=''
result_dict['address']=''
else:
print(u"模式选择错误!")
#showimg(img_data_gray)
return result_dict
def generate_mask(x):
name_mask_pic = cv2.UMat(cv2.imread('name_mask.jpg'))
sex_mask_pic = cv2.UMat(cv2.imread('sex_mask.jpg'))
nation_mask_pic = cv2.UMat(cv2.imread('nation_mask.jpg'))
birth_mask_pic = cv2.UMat(cv2.imread('birth_mask.jpg'))
year_mask_pic = cv2.UMat(cv2.imread('year_mask.jpg'))
month_mask_pic = cv2.UMat(cv2.imread('month_mask.jpg'))
day_mask_pic = cv2.UMat(cv2.imread('day_mask.jpg'))
address_mask_pic = cv2.UMat(cv2.imread('address_mask.jpg'))
idnum_mask_pic = cv2.UMat(cv2.imread('idnum_mask.jpg'))
name_mask_pic = img_resize_x(name_mask_pic)
sex_mask_pic = img_resize_x(sex_mask_pic)
nation_mask_pic = img_resize_x(nation_mask_pic)
birth_mask_pic = img_resize_x(birth_mask_pic)
year_mask_pic = img_resize_x(year_mask_pic)
month_mask_pic = img_resize_x(month_mask_pic)
day_mask_pic = img_resize_x(day_mask_pic)
address_mask_pic = img_resize_x(address_mask_pic)
idnum_mask_pic = img_resize_x(idnum_mask_pic)
cv2.imwrite('name_mask_%s.jpg'%pixel_x, name_mask_pic)
cv2.imwrite('sex_mask_%s.jpg' %pixel_x, sex_mask_pic)
cv2.imwrite('nation_mask_%s.jpg' %pixel_x, nation_mask_pic)
cv2.imwrite('birth_mask_%s.jpg' %pixel_x, birth_mask_pic)
cv2.imwrite('year_mask_%s.jpg' % pixel_x, year_mask_pic)
cv2.imwrite('month_mask_%s.jpg' % pixel_x, month_mask_pic)
cv2.imwrite('day_mask_%s.jpg' % pixel_x, day_mask_pic)
cv2.imwrite('address_mask_%s.jpg' %pixel_x, address_mask_pic)
cv2.imwrite('idnum_mask_%s.jpg' %pixel_x, idnum_mask_pic)
#用于生成模板
def img_resize_x(imggray):
# print 'dheight:%s' % dheight
crop = imggray
size = crop.get().shape
dheight = int(size[0]*x)
dwidth = int(size[1]*x)
crop = cv2.resize(src=crop, dsize=(dwidth, dheight), interpolation=cv2.INTER_CUBIC)
return crop
#idcardocr里面resize以高度为依据, 用于get部分
def img_resize(imggray, dheight):
# print 'dheight:%s' % dheight
crop = imggray
size = crop.get().shape
height = size[0]
width = size[1]
width = width * dheight / height
crop = cv2.resize(src=crop, dsize=(int(width), dheight), interpolation=cv2.INTER_CUBIC)
return crop
def img_resize_gray(imgorg):
#imgorg = cv2.imread(imgname)
crop = imgorg
size = cv2.UMat.get(crop).shape
# print size
height = size[0]
width = size[1]
# 参数是根据3840调的
height = int(height * 3840 * x / width)
# print height
crop = cv2.resize(src=crop, dsize=(int(3840 * x), height), interpolation=cv2.INTER_CUBIC)
return hist_equal(cv2.cvtColor(crop, cv2.COLOR_BGR2GRAY)), crop
def find_name(crop_gray, crop_org):
template = cv2.UMat(cv2.imread('name_mask_%s.jpg'%pixel_x, 0))
# showimg(crop_org)
w, h = cv2.UMat.get(template).shape[::-1]
res = cv2.matchTemplate(crop_gray, template, cv2.TM_CCOEFF_NORMED)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
# print(max_loc)
top_left = (max_loc[0] + w, max_loc[1] - int(20*x))
bottom_right = (top_left[0] + int(700*x), top_left[1] + int(300*x))
result = cv2.UMat.get(crop_org)[top_left[1]-10:bottom_right[1], top_left[0]-10:bottom_right[0]]
cv2.rectangle(crop_gray, top_left, bottom_right, 255, 2)
# showimg(result)
return cv2.UMat(result)
def find_sex(crop_gray, crop_org):
template = cv2.UMat(cv2.imread('sex_mask_%s.jpg'%pixel_x, 0))
# showimg(template)
w, h = cv2.UMat.get(template).shape[::-1]
res = cv2.matchTemplate(crop_gray, template, cv2.TM_CCOEFF_NORMED)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
top_left = (max_loc[0] + w, max_loc[1] - int(20*x))
bottom_right = (top_left[0] + int(300*x), top_left[1] + int(300*x))
result = cv2.UMat.get(crop_org)[top_left[1]-10:bottom_right[1], top_left[0]-10:bottom_right[0]]
cv2.rectangle(crop_gray, top_left, bottom_right, 255, 2)
#showimg(crop_gray)
return cv2.UMat(result)
def find_nation(crop_gray, crop_org):
template = cv2.UMat(cv2.imread('nation_mask_%s.jpg'%pixel_x, 0))
#showimg(template)
w, h = cv2.UMat.get(template).shape[::-1]
res = cv2.matchTemplate(crop_gray, template, cv2.TM_CCOEFF_NORMED)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
top_left = (max_loc[0] + w - int(20*x), max_loc[1] - int(20*x))
bottom_right = (top_left[0] + int(500*x), top_left[1] + int(300*x))
result = cv2.UMat.get(crop_org)[top_left[1]-10:bottom_right[1], top_left[0]-10:bottom_right[0]]
cv2.rectangle(crop_gray, top_left, bottom_right, 255, 2)
#showimg(crop_gray)
return cv2.UMat(result)
# def find_birth(crop_gray, crop_org):
# template = cv2.UMat(cv2.imread('birth_mask_%s.jpg'%pixel_x, 0))
# # showimg(template)
# w, h = cv2.UMat.get(template).shape[::-1]
# res = cv2.matchTemplate(crop_gray, template, cv2.TM_CCOEFF_NORMED)
# #showimg(crop_gray)
# min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
# top_left = (max_loc[0] + w, max_loc[1] - int(20*x))
# bottom_right = (top_left[0] + int(1500*x), top_left[1] + int(300*x))
# # 提取result需要在rectangle之前
# date_org = cv2.UMat.get(crop_org)[top_left[1]:bottom_right[1], top_left[0]:bottom_right[0]]
# date = cv2.cvtColor(date_org, cv2.COLOR_BGR2GRAY)
# cv2.rectangle(crop_gray, top_left, bottom_right, 255, 2)
# # cv2.imwrite('date.png',date)
#
# # 提取年份
# template = cv2.UMat(cv2.imread('year_mask_%s.jpg'%pixel_x, 0))
# year_res = cv2.matchTemplate(date, template, cv2.TM_CCOEFF_NORMED)
# min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(year_res)
# bottom_right = (max_loc[0]+int(20*x), int(300*x))
# top_left = (0, 0)
# year = date_org[top_left[1]:bottom_right[1], top_left[0]:bottom_right[0]]
# # cv2.imwrite('year.png',year)
# cv2.rectangle(crop_gray, top_left, bottom_right, 255, 2)
#
# # 提取月
# template = cv2.UMat(cv2.imread('month_mask_%s.jpg'%pixel_x, 0))
# month_res = cv2.matchTemplate(date, template, cv2.TM_CCOEFF_NORMED)
# min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(month_res)
# bottom_right = (max_loc[0]+int(40*x), int(300*x))
# top_left = (max_loc[0] - int(220*x), 0)
# month = date_org[top_left[1]:bottom_right[1], top_left[0]:bottom_right[0]]
# # cv2.imwrite('month.png',month)
# cv2.rectangle(crop_gray, top_left, bottom_right, 255, 2)
#
# # 提取日
# template = cv2.UMat(cv2.imread('day_mask_%s.jpg'%pixel_x, 0))
# day_res = cv2.matchTemplate(date, template, cv2.TM_CCOEFF_NORMED)
# min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(day_res)
# bottom_right = (max_loc[0]+int(20*x), int(300*x))
# top_left = (max_loc[0] - int(220*x), 0)
# day = date_org[top_left[1]:bottom_right[1], top_left[0]:bottom_right[0]]
# # cv2.imwrite('day.png',day)
# cv2.rectangle(crop_gray, top_left, bottom_right, 255, 2)
# showimg(crop_gray)
# return cv2.UMat(year), cv2.UMat(month), cv2.UMat(day)
def find_address(crop_gray, crop_org):
template = cv2.UMat(cv2.imread('address_mask_%s.jpg'%pixel_x, 0))
# showimg(template)
#showimg(crop_gray)
w, h = cv2.UMat.get(template).shape[::-1]
#t1 = round(time.time()*1000)
res = cv2.matchTemplate(crop_gray, template, cv2.TM_CCOEFF_NORMED)
#t2 = round(time.time()*1000)
#print 'time:%s'%(t2-t1)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
top_left = (max_loc[0] + w, max_loc[1] - int(20*x))
bottom_right = (top_left[0] + int(1700*x), top_left[1] + int(550*x))
result = cv2.UMat.get(crop_org)[top_left[1]-10:bottom_right[1], top_left[0]-10:bottom_right[0]]
cv2.rectangle(crop_gray, top_left, bottom_right, 255, 2)
#showimg(crop_gray)
return cv2.UMat(result)
def find_idnum(crop_gray, crop_org):
template = cv2.UMat(cv2.imread('idnum_mask_%s.jpg'%pixel_x, 0))
# showimg(template)
#showimg(crop_gray)
w, h = cv2.UMat.get(template).shape[::-1]
res = cv2.matchTemplate(crop_gray, template, cv2.TM_CCOEFF_NORMED)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
top_left = (max_loc[0] + w, max_loc[1] - int(20*x))
bottom_right = (top_left[0] + int(2300*x), top_left[1] + int(300*x))
result = cv2.UMat.get(crop_org)[top_left[1]-10:bottom_right[1], top_left[0]-10:bottom_right[0]]
cv2.rectangle(crop_gray, top_left, bottom_right, 255, 2)
#showimg(crop_gray)
return cv2.UMat(result)
def showimg(img):
cv2.namedWindow("contours", 0);
cv2.resizeWindow("contours", 1280, 720);
cv2.imshow("contours", img)
cv2.waitKey()
#psm model:
# 0 Orientation and script detection (OSD) only.
# 1 Automatic page segmentation with OSD.
# 2 Automatic page segmentation, but no OSD, or OCR.
# 3 Fully automatic page segmentation, but no OSD. (Default)
# 4 Assume a single column of text of variable sizes.
# 5 Assume a single uniform block of vertically aligned text.
# 6 Assume a single uniform block of text.
# 7 Treat the image as a single text line.
# 8 Treat the image as a single word.
# 9 Treat the image as a single word in a circle.
# 10 Treat the image as a single character.
# 11 Sparse text. Find as much text as possible in no particular order.
# 12 Sparse text with OSD.
# 13 Raw line. Treat the image as a single text line,
# bypassing hacks that are Tesseract-specific
def get_name(img):
# cv2.imshow("method3", img)
# cv2.waitKey()
print('name')
_, _, red = cv2.split(img) #split 会自动将UMat转换回Mat
red = cv2.UMat(red)
red = hist_equal(red)
red = cv2.adaptiveThreshold(red, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 151, 50)
# red = cv2.medianBlur(red, 3)
red = img_resize(red, 150)
img = img_resize(img, 150)
# showimg(red)
# cv2.imwrite('name.png', red)
# img2 = Image.open('address.png')
# img = Image.fromarray(cv2.UMat.get(red).astype('uint8'))
#return get_result_vary_length(red, 'chi_sim', img, '-psm 7')
return get_result_vary_length(red, 'chi_sim', img, '--psm 7')
# return punc_filter(pytesseract.image_to_string(img, lang='chi_sim', config='-psm 13').replace(" ",""))
def get_sex(img):
_, _, red = cv2.split(img)
print('sex')
red = cv2.UMat(red)
red = hist_equal(red)
red = cv2.adaptiveThreshold(red, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 151, 50)
# red = cv2.medianBlur(red, 3)
# cv2.imwrite('address.png', img)
# img2 = Image.open('address.png')
red = img_resize(red, 150)
# cv2.imwrite('sex.png', red)
# img = Image.fromarray(cv2.UMat.get(red).astype('uint8'))
#return get_result_fix_length(red, 1, 'sex', '-psm 10')
return get_result_fix_length(red, 1, 'chi_sim', '--psm 10')
# return pytesseract.image_to_string(img, lang='sex', config='-psm 10').replace(" ","")
def get_nation(img):
_, _, red = cv2.split(img)
print('nation')
red = cv2.UMat(red)
red = hist_equal(red)
red = cv2.adaptiveThreshold(red, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 151, 50)
red = img_resize(red, 150)
# cv2.imwrite('nation.png', red)
# img = Image.fromarray(cv2.UMat.get(red).astype('uint8'))
#return get_result_fix_length(red, 1, 'nation', '-psm 10')
return get_result_fix_length(red, 1, 'chi_sim', '--psm 10')
# return pytesseract.image_to_string(img, lang='nation', config='-psm 13').replace(" ","")
# def get_birth(year, month, day):
# _, _, red = cv2.split(year)
# red = cv2.UMat(red)
# red = hist_equal(red)
# red = cv2.adaptiveThreshold(red, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 151, 50)
# red = img_resize(red, 150)
# # cv2.imwrite('year_red.png', red)
# year_red = red
#
# _, _, red = cv2.split(month)
# red = cv2.UMat(red)
# red = hist_equal(red)
# red = cv2.adaptiveThreshold(red, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 151, 50)
# #red = cv2.erode(red,kernel,iterations = 1)
# red = img_resize(red, 150)
# # cv2.imwrite('month_red.png', red)
# month_red = red
#
# _, _, red = cv2.split(day)
# red = cv2.UMat(red)
# red = hist_equal(red)
# red = cv2.adaptiveThreshold(red, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 151, 50)
# red = img_resize(red, 150)
# # cv2.imwrite('day_red.png', red)
# day_red = red
# # return pytesseract.image_to_string(img, lang='birth', config='-psm 7')
# return get_result_fix_length(year_red, 4, 'eng', '-c tessedit_char_whitelist=0123456789 -psm 13'), \
# get_result_vary_length(month_red, 'eng', '-c tessedit_char_whitelist=0123456789 -psm 13'), \
# get_result_vary_length(day_red, 'eng', '-c tessedit_char_whitelist=0123456789 -psm 13')
def get_address(img):
#_, _, red = cv2.split(img)
#red = cv2.medianBlur(red, 3)
print('address')
_, _, red = cv2.split(img)
red = cv2.UMat(red)
red = hist_equal(red)
red = cv2.adaptiveThreshold(red, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 151, 50)
red = img_resize(red, 300)
#img = img_resize(img, 300)
#cv2.imwrite('address_red.png', red)
img = Image.fromarray(cv2.UMat.get(red).astype('uint8'))
#return punc_filter(get_result_vary_length(red,'chi_sim', img, '-psm 6'))
return punc_filter(get_result_vary_length(red, 'chi_sim', img, '--psm 6'))
#return punc_filter(pytesseract.image_to_string(img, lang='chi_sim', config='-psm 3').replace(" ",""))
def get_idnum_and_birth(img):
_, _, red = cv2.split(img)
print('idnum')
red = cv2.UMat(red)
red = hist_equal(red)
red = cv2.adaptiveThreshold(red, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 151, 50)
red = img_resize(red, 150)
# cv2.imwrite('idnum_red.png', red)
#idnum_str = get_result_fix_length(red, 18, 'idnum', '-psm 8')
# idnum_str = get_result_fix_length(red, 18, 'eng', '--psm 8 ')
img = Image.fromarray(cv2.UMat.get(red).astype('uint8'))
idnum_str = get_result_vary_length(red, 'eng', img, '--psm 8 ')
return idnum_str, idnum_str[6:14]
def get_result_fix_length(red, fix_length, langset, custom_config=''):
red_org = red
cv2.fastNlMeansDenoising(red, red, 4, 7, 35)
rec, red = cv2.threshold(red, 127, 255, cv2.THRESH_BINARY_INV)
image, contours, hierarchy = cv2.findContours(red, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# print(len(contours))
# 描边一次可以减少噪点
cv2.drawContours(red, contours, -1, (0, 255, 0), 1)
color_img = cv2.cvtColor(red, cv2.COLOR_GRAY2BGR)
# for x, y, w, h in contours:
# imgrect = cv2.rectangle(color_img, (x, y), (x + w, y + h), (0, 255, 0), 2)
# showimg(imgrect)
h_threshold = 54
numset_contours = []
calcu_cnt = 1
for cnt in contours:
x, y, w, h = cv2.boundingRect(cnt)
if h > h_threshold:
numset_contours.append((x, y, w, h))
while len(numset_contours) != fix_length:
if calcu_cnt > 50:
print(u'计算次数过多!目前阈值为:', h_threshold)
break
numset_contours = []
calcu_cnt += 1
if len(numset_contours) > fix_length:
h_threshold += 1
contours_cnt = 0
for cnt in contours:
x, y, w, h = cv2.boundingRect(cnt)
if h > h_threshold:
contours_cnt += 1
numset_contours.append((x, y, w, h))
if len(numset_contours) < fix_length:
h_threshold -= 1
contours_cnt = 0
for cnt in contours:
x, y, w, h = cv2.boundingRect(cnt)
if h > h_threshold:
contours_cnt += 1
numset_contours.append((x, y, w, h))
result_string = ''
numset_contours.sort(key=lambda num: num[0])
for x, y, w, h in numset_contours:
result_string += pytesseract.image_to_string(cv2.UMat.get(red_org)[y-10:y + h + 10, x-10:x + w + 10], lang=langset, config=custom_config)
# print(new_r)
# cv2.imwrite('fixlengthred.png', cv2.UMat.get(red_org)[y-10:y + h +10 , x-10:x + w + 10])
print(result_string)
return result_string
def get_result_vary_length(red, langset, org_img, custom_config=''):
red_org = red
# cv2.fastNlMeansDenoising(red, red, 4, 7, 35)
rec, red = cv2.threshold(red, 127, 255, cv2.THRESH_BINARY_INV)
image, contours, hierarchy = cv2.findContours(red, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# print(len(contours))
# 描边一次可以减少噪点
cv2.drawContours(red, contours, -1, (255, 255, 255), 1)
color_img = cv2.cvtColor(red, cv2.COLOR_GRAY2BGR)
numset_contours = []
height_list=[]
width_list=[]
for cnt in contours:
x, y, w, h = cv2.boundingRect(cnt)
height_list.append(h)
# print(h,w)
width_list.append(w)
height_list.remove(max(height_list))
width_list.remove(max(width_list))
height_threshold = 0.70*max(height_list)
width_threshold = 1.4 * max(width_list)
# print('height_threshold:'+str(height_threshold)+'width_threshold:'+str(width_threshold))
big_rect=[]
for cnt in contours:
x, y, w, h = cv2.boundingRect(cnt)
if h > height_threshold and w < width_threshold:
# print(h,w)
numset_contours.append((x, y, w, h))
big_rect.append((x, y))
big_rect.append((x + w, y + h))
big_rect_nparray = np.array(big_rect, ndmin=3)
x, y, w, h = cv2.boundingRect(big_rect_nparray)
# imgrect = cv2.rectangle(color_img, (x, y), (x + w, y + h), (0, 255, 0), 2)
# showimg(imgrect)
# showimg(cv2.UMat.get(org_img)[y:y + h, x:x + w])
result_string = ''
result_string += pytesseract.image_to_string(cv2.UMat.get(red_org)[y-10:y + h + 10, x-10:x + w + 10], lang=langset,
config=custom_config)
print(result_string)
# cv2.imwrite('varylength.png', cv2.UMat.get(org_img)[y:y + h, x:x + w])
# cv2.imwrite('varylengthred.png', cv2.UMat.get(red_org)[y:y + h, x:x + w])
# numset_contours.sort(key=lambda num: num[0])
# for x, y, w, h in numset_contours:
# result_string += pytesseract.image_to_string(cv2.UMat.get(color_img)[y:y + h, x:x + w], lang=langset, config=custom_config)
return punc_filter(result_string)
def punc_filter(str):
temp = str
xx = u"([\u4e00-\u9fff0-9A-Z]+)"
pattern = re.compile(xx)
results = pattern.findall(temp)
string = ""
for result in results:
string += result
return string
#这里使用直方图拉伸,不是直方图均衡
def hist_equal(img):
# clahe_size = 8
# clahe = cv2.createCLAHE(clipLimit=1.0, tileGridSize=(clahe_size, clahe_size))
# result = clahe.apply(img)
#test
#result = cv2.equalizeHist(img)
image = img.get() #UMat to Mat
# result = cv2.equalizeHist(image)
lut = np.zeros(256, dtype = image.dtype )#创建空的查找表
#lut = np.zeros(256)
hist= cv2.calcHist([image], #计算图像的直方图
[0], #使用的通道
None, #没有使用mask
[256], #it is a 1D histogram
[0,256])
minBinNo, maxBinNo = 0, 255
#计算从左起第一个不为0的直方图柱的位置
for binNo, binValue in enumerate(hist):
if binValue != 0:
minBinNo = binNo
break
#计算从右起第一个不为0的直方图柱的位置
for binNo, binValue in enumerate(reversed(hist)):
if binValue != 0:
maxBinNo = 255-binNo
break
#print minBinNo, maxBinNo
#生成查找表
for i,v in enumerate(lut):
if i < minBinNo:
lut[i] = 0
elif i > maxBinNo:
lut[i] = 255
else:
lut[i] = int(255.0*(i-minBinNo)/(maxBinNo-minBinNo)+0.5)
#计算,调用OpenCV cv2.LUT函数,参数 image -- 输入图像,lut -- 查找表
#print lut
result = cv2.LUT(image, lut)
#print type(result)
#showimg(result)
return cv2.UMat(result)
if __name__=="__main__":
idocr = idcardocr(cv2.UMat(cv2.imread('testimages/zrh.jpg')))
print(idocr)
# for i in range(15):
# idocr = idcardocr(cv2.UMat(cv2.imread('testimages/%s.jpg'%(i+1))))
# print(idocr['idnum'])