forked from BIGPPWONG/idcardocr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfindidcard.py
93 lines (82 loc) · 3.53 KB
/
findidcard.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# -*- coding: utf-8 -*-
import numpy as np
import cv2, time
import idcardocr
from matplotlib import pyplot as plt
class findidcard:
def __init__(self):
pass
#img1为身份证模板, img2为需要识别的图像
def find(self, img2_name):
print(u'进入身份证模版匹配流程...')
img1_name = 'idcard_mask.jpg'
MIN_MATCH_COUNT = 10
img1 = cv2.UMat(cv2.imread(img1_name, 0)) # queryImage in Gray
img1 = self.img_resize(img1, 640)
# self.showimg(img1)
#img1 = idocr.hist_equal(img1)
img2 = cv2.UMat(cv2.imread(img2_name, 0)) # trainImage in Gray
# print(img2.get().shape)
img2 = self.img_resize(img2, 1920)
#img2 = idocr.hist_equal(img2)
img_org = cv2.UMat(cv2.imread(img2_name))
img_org = self.img_resize(img_org, 1920)
# Initiate SIFT detector
t1 = round(time.time() * 1000)
sift = cv2.xfeatures2d.SIFT_create()
# find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(img1,None)
kp2, des2 = sift.detectAndCompute(img2,None)
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks = 10)
flann = cv2.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1,des2,k=2)
# store all the good matches as per Lowe's ratio test.
#两个最佳匹配之间距离需要大于ratio 0.7,距离过于相似可能是噪声点
good = []
for m,n in matches:
if m.distance < 0.7*n.distance:
good.append(m)
#reshape为(x,y)数组
if len(good)>MIN_MATCH_COUNT:
src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2)
dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2)
#用HomoGraphy计算图像与图像之间映射关系, M为转换矩阵
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,5.0)
matchesMask = mask.ravel().tolist()
#使用转换矩阵M计算出img1在img2的对应形状
h,w = cv2.UMat.get(img1).shape
M_r=np.linalg.inv(M)
im_r = cv2.warpPerspective(img_org, M_r, (w,h))
# self.showimg(im_r)
else:
print("Not enough matches are found - %d/%d" % (len(good),MIN_MATCH_COUNT))
matchesMask = None
#draw_params = dict(matchColor = (0,255,0), # draw matches in green color
# singlePointColor = None,
# matchesMask = matchesMask, # draw only inliers
# flags = 2)
#img3 = cv2.drawMatches(img1,kp1,img2,kp2,good,None,**draw_params)
#plt.imshow(img3, 'gray'),plt.show()
t2 = round(time.time() * 1000)
print(u'查找身份证耗时:%s' % (t2 - t1))
return im_r
def showimg(self, img):
cv2.namedWindow("contours", 0);
#cv2.resizeWindow("contours", 1600, 1200);
cv2.imshow("contours", img)
cv2.waitKey()
def img_resize(self, imggray, dwidth):
# print 'dwidth:%s' % dwidth
crop = imggray
size = crop.get().shape
height = size[0]
width = size[1]
height = height * dwidth / width
crop = cv2.resize(src=crop, dsize=(dwidth, int(height)), interpolation=cv2.INTER_CUBIC)
return crop
if __name__=="__main__":
idfind = findidcard()
result = idfind.find('idcard_mask.jpg', 'testimages/9.jpg')
#idfind.showimg(result)