forked from aqlaboratory/openfold
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_openfold.py
701 lines (618 loc) · 24.7 KB
/
train_openfold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
import argparse
import logging
import os
import sys
import json
import pytorch_lightning as pl
from pytorch_lightning.callbacks.lr_monitor import LearningRateMonitor
from pytorch_lightning.callbacks import DeviceStatsMonitor
from pytorch_lightning.callbacks.model_checkpoint import ModelCheckpoint
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.strategies import DDPStrategy, DeepSpeedStrategy
from pytorch_lightning.plugins.environments import MPIEnvironment
from pytorch_lightning import seed_everything
import torch
import wandb
from deepspeed.utils import zero_to_fp32
from openfold.config import model_config
from openfold.data.data_modules import OpenFoldDataModule, OpenFoldMultimerDataModule
from openfold.model.model import AlphaFold
from openfold.model.torchscript import script_preset_
from openfold.np import residue_constants
from openfold.utils.argparse_utils import remove_arguments
from openfold.utils.callbacks import (
EarlyStoppingVerbose,
)
from openfold.utils.exponential_moving_average import ExponentialMovingAverage
from openfold.utils.loss import AlphaFoldLoss, lddt_ca
from openfold.utils.lr_schedulers import AlphaFoldLRScheduler
from openfold.utils.multi_chain_permutation import multi_chain_permutation_align
from openfold.utils.superimposition import superimpose
from openfold.utils.tensor_utils import tensor_tree_map
from openfold.utils.validation_metrics import (
drmsd,
gdt_ts,
gdt_ha,
)
from openfold.utils.import_weights import (
import_jax_weights_,
import_openfold_weights_
)
from openfold.utils.logger import PerformanceLoggingCallback
class OpenFoldWrapper(pl.LightningModule):
def __init__(self, config):
super(OpenFoldWrapper, self).__init__()
self.config = config
self.model = AlphaFold(config)
self.is_multimer = self.config.globals.is_multimer
self.loss = AlphaFoldLoss(config.loss)
self.ema = ExponentialMovingAverage(
model=self.model, decay=config.ema.decay
)
self.cached_weights = None
self.last_lr_step = -1
self.save_hyperparameters()
def forward(self, batch):
return self.model(batch)
def _log(self, loss_breakdown, batch, outputs, train=True):
phase = "train" if train else "val"
for loss_name, indiv_loss in loss_breakdown.items():
self.log(
f"{phase}/{loss_name}",
indiv_loss,
prog_bar=(loss_name == 'loss'),
on_step=train, on_epoch=(not train), logger=True, sync_dist=False,
)
if(train):
self.log(
f"{phase}/{loss_name}_epoch",
indiv_loss,
on_step=False, on_epoch=True, logger=True, sync_dist=False,
)
with torch.no_grad():
other_metrics = self._compute_validation_metrics(
batch,
outputs,
superimposition_metrics=(not train)
)
for k,v in other_metrics.items():
self.log(
f"{phase}/{k}",
torch.mean(v),
prog_bar = (k == 'loss'),
on_step=False, on_epoch=True, logger=True, sync_dist=False,
)
def training_step(self, batch, batch_idx):
if(self.ema.device != batch["aatype"].device):
self.ema.to(batch["aatype"].device)
ground_truth = batch.pop('gt_features', None)
# Run the model
outputs = self(batch)
# Remove the recycling dimension
batch = tensor_tree_map(lambda t: t[..., -1], batch)
if self.is_multimer:
batch = multi_chain_permutation_align(out=outputs,
features=batch,
ground_truth=ground_truth)
# Compute loss
loss, loss_breakdown = self.loss(
outputs, batch, _return_breakdown=True
)
# Log it
self._log(loss_breakdown, batch, outputs)
return loss
def on_before_zero_grad(self, *args, **kwargs):
self.ema.update(self.model)
def validation_step(self, batch, batch_idx):
# At the start of validation, load the EMA weights
if(self.cached_weights is None):
# model.state_dict() contains references to model weights rather
# than copies. Therefore, we need to clone them before calling
# load_state_dict().
clone_param = lambda t: t.detach().clone()
self.cached_weights = tensor_tree_map(clone_param, self.model.state_dict())
self.model.load_state_dict(self.ema.state_dict()["params"])
ground_truth = batch.pop('gt_features', None)
# Run the model
outputs = self(batch)
batch = tensor_tree_map(lambda t: t[..., -1], batch)
batch["use_clamped_fape"] = 0.
if self.is_multimer:
batch = multi_chain_permutation_align(out=outputs,
features=batch,
ground_truth=ground_truth)
# Compute loss and other metrics
_, loss_breakdown = self.loss(
outputs, batch, _return_breakdown=True
)
self._log(loss_breakdown, batch, outputs, train=False)
def on_validation_epoch_end(self):
# Restore the model weights to normal
self.model.load_state_dict(self.cached_weights)
self.cached_weights = None
def _compute_validation_metrics(self,
batch,
outputs,
superimposition_metrics=False
):
metrics = {}
gt_coords = batch["all_atom_positions"]
pred_coords = outputs["final_atom_positions"]
all_atom_mask = batch["all_atom_mask"]
# This is super janky for superimposition. Fix later
gt_coords_masked = gt_coords * all_atom_mask[..., None]
pred_coords_masked = pred_coords * all_atom_mask[..., None]
ca_pos = residue_constants.atom_order["CA"]
gt_coords_masked_ca = gt_coords_masked[..., ca_pos, :]
pred_coords_masked_ca = pred_coords_masked[..., ca_pos, :]
all_atom_mask_ca = all_atom_mask[..., ca_pos]
lddt_ca_score = lddt_ca(
pred_coords,
gt_coords,
all_atom_mask,
eps=self.config.globals.eps,
per_residue=False,
)
metrics["lddt_ca"] = lddt_ca_score
drmsd_ca_score = drmsd(
pred_coords_masked_ca,
gt_coords_masked_ca,
mask=all_atom_mask_ca, # still required here to compute n
)
metrics["drmsd_ca"] = drmsd_ca_score
if(superimposition_metrics):
superimposed_pred, alignment_rmsd = superimpose(
gt_coords_masked_ca, pred_coords_masked_ca, all_atom_mask_ca,
)
gdt_ts_score = gdt_ts(
superimposed_pred, gt_coords_masked_ca, all_atom_mask_ca
)
gdt_ha_score = gdt_ha(
superimposed_pred, gt_coords_masked_ca, all_atom_mask_ca
)
metrics["alignment_rmsd"] = alignment_rmsd
metrics["gdt_ts"] = gdt_ts_score
metrics["gdt_ha"] = gdt_ha_score
return metrics
def configure_optimizers(self,
learning_rate: float = 1e-3,
eps: float = 1e-5,
) -> torch.optim.Adam:
# Ignored as long as a DeepSpeed optimizer is configured
optimizer = torch.optim.Adam(
self.model.parameters(),
lr=learning_rate,
eps=eps
)
if self.last_lr_step != -1:
for group in optimizer.param_groups:
if 'initial_lr' not in group:
group['initial_lr'] = learning_rate
lr_scheduler = AlphaFoldLRScheduler(
optimizer,
last_epoch=self.last_lr_step
)
return {
"optimizer": optimizer,
"lr_scheduler": {
"scheduler": lr_scheduler,
"interval": "step",
"name": "AlphaFoldLRScheduler",
}
}
def on_load_checkpoint(self, checkpoint):
ema = checkpoint["ema"]
if(not self.model.template_config.enabled):
ema["params"] = {k:v for k,v in ema["params"].items() if not "template" in k}
self.ema.load_state_dict(ema)
def on_save_checkpoint(self, checkpoint):
checkpoint["ema"] = self.ema.state_dict()
def resume_last_lr_step(self, lr_step):
self.last_lr_step = lr_step
def load_from_jax(self, jax_path):
model_basename = os.path.splitext(
os.path.basename(
os.path.normpath(jax_path)
)
)[0]
model_version = "_".join(model_basename.split("_")[1:])
import_jax_weights_(
self.model, jax_path, version=model_version
)
def get_model_state_dict_from_ds_checkpoint(checkpoint_dir):
latest_path = os.path.join(checkpoint_dir, 'latest')
if os.path.isfile(latest_path):
with open(latest_path, 'r') as fd:
tag = fd.read().strip()
else:
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
_DS_CHECKPOINT_VERSION = 2 # based on manual parsing of checkpoint files
state_file = zero_to_fp32.get_model_state_file(ds_checkpoint_dir, _DS_CHECKPOINT_VERSION)
return torch.load(state_file)
def main(args):
if(args.seed is not None):
seed_everything(args.seed, workers=True)
is_low_precision = args.precision in [
"bf16-mixed", "16", "bf16", "16-true", "16-mixed", "bf16-mixed"]
config = model_config(
args.config_preset,
train=True,
low_prec=is_low_precision,
)
if args.experiment_config_json:
with open(args.experiment_config_json, 'r') as f:
custom_config_dict = json.load(f)
config.update_from_flattened_dict(custom_config_dict)
model_module = OpenFoldWrapper(config)
if args.resume_from_ckpt:
if args.resume_model_weights_only:
# Load the checkpoint
if os.path.isdir(args.resume_from_ckpt):
sd = zero_to_fp32.get_fp32_state_dict_from_zero_checkpoint(
args.resume_from_ckpt)
else:
sd = torch.load(args.resume_from_ckpt)
# Process the state dict
if 'module' in sd:
sd = {k[len('module.'):]: v for k, v in sd['module'].items()}
import_openfold_weights_(model=model_module, state_dict=sd)
elif 'state_dict' in sd:
import_openfold_weights_(
model=model_module, state_dict=sd['state_dict'])
else:
# Loading from pre-trained model
sd = {'model.'+k: v for k, v in sd.items()}
import_openfold_weights_(model=model_module, state_dict=sd)
logging.info("Successfully loaded model weights...")
else: # Loads a checkpoint to start from a specific time step
if os.path.isdir(args.resume_from_ckpt):
sd = get_model_state_dict_from_ds_checkpoint(args.resume_from_ckpt)
else:
sd = torch.load(args.resume_from_ckpt)
last_global_step = int(sd['global_step'])
model_module.resume_last_lr_step(last_global_step)
logging.info("Successfully loaded last lr step...")
if args.resume_from_jax_params:
model_module.load_from_jax(args.resume_from_jax_params)
logging.info(f"Successfully loaded JAX parameters at {args.resume_from_jax_params}...")
# TorchScript components of the model
if(args.script_modules):
script_preset_(model_module)
if "multimer" in args.config_preset:
data_module = OpenFoldMultimerDataModule(
config=config.data,
batch_seed=args.seed,
**vars(args)
)
else:
data_module = OpenFoldDataModule(
config=config.data,
batch_seed=args.seed,
**vars(args)
)
data_module.prepare_data()
data_module.setup()
callbacks = []
if(args.checkpoint_every_epoch):
mc = ModelCheckpoint(
every_n_epochs=1,
auto_insert_metric_name=False,
save_top_k=-1,
)
callbacks.append(mc)
if(args.early_stopping):
es = EarlyStoppingVerbose(
monitor="val/lddt_ca",
min_delta=args.min_delta,
patience=args.patience,
verbose=False,
mode="max",
check_finite=True,
strict=True,
)
callbacks.append(es)
if(args.log_performance):
global_batch_size = args.num_nodes * args.gpus
perf = PerformanceLoggingCallback(
log_file=os.path.join(args.output_dir, "performance_log.json"),
global_batch_size=global_batch_size,
)
callbacks.append(perf)
if(args.log_lr):
lr_monitor = LearningRateMonitor(logging_interval="step")
callbacks.append(lr_monitor)
loggers = []
is_rank_zero = args.mpi_plugin and (int(os.environ.get("PMI_RANK")) == 0)
if(args.wandb):
if args.mpi_plugin and is_rank_zero:
wandb_init_dict = dict(
name=args.experiment_name,
project=args.wandb_project,
id=args.wandb_id,
dir=args.output_dir,
resume="allow",
anonymous=None,
entity=args.wandb_entity
)
wandb.run = wandb.init(**wandb_init_dict)
wdb_logger = WandbLogger(
name=args.experiment_name,
save_dir=args.output_dir,
id=args.wandb_id,
project=args.wandb_project,
**{"entity": args.wandb_entity}
)
loggers.append(wdb_logger)
cluster_environment = MPIEnvironment() if args.mpi_plugin else None
if(args.deepspeed_config_path is not None):
strategy = DeepSpeedStrategy(
config=args.deepspeed_config_path,
cluster_environment=cluster_environment,
)
if(args.wandb and is_rank_zero):
wdb_logger.experiment.save(args.deepspeed_config_path)
wdb_logger.experiment.save("openfold/config.py")
elif (args.gpus is not None and args.gpus > 1) or args.num_nodes > 1:
strategy = DDPStrategy(find_unused_parameters=False,
cluster_environment=cluster_environment)
else:
strategy = None
if(args.wandb and is_rank_zero):
freeze_path = f"{wdb_logger.experiment.dir}/package_versions.txt"
os.system(f"{sys.executable} -m pip freeze > {freeze_path}")
wdb_logger.experiment.save(f"{freeze_path}")
trainer_kws = ['num_nodes', 'precision', 'max_epochs', 'log_every_n_steps',
'flush_logs_ever_n_steps', 'num_sanity_val_steps', 'reload_dataloaders_every_n_epochs']
trainer_args = {k: v for k, v in vars(args).items() if k in trainer_kws}
trainer_args.update({
'default_root_dir': args.output_dir,
'strategy': strategy,
'callbacks': callbacks,
'logger': loggers,
})
trainer = pl.Trainer(**trainer_args)
if (args.resume_model_weights_only):
ckpt_path = None
else:
ckpt_path = args.resume_from_ckpt
trainer.fit(
model_module,
datamodule=data_module,
ckpt_path=ckpt_path,
)
def bool_type(bool_str: str):
bool_str_lower = bool_str.lower()
if bool_str_lower in ('false', 'f', 'no', 'n', '0'):
return False
elif bool_str_lower in ('true', 't', 'yes', 'y', '1'):
return True
else:
raise ValueError(f'Cannot interpret {bool_str} as bool')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"train_data_dir", type=str,
help="Directory containing training mmCIF files"
)
parser.add_argument(
"train_alignment_dir", type=str,
help="Directory containing precomputed training alignments"
)
parser.add_argument(
"template_mmcif_dir", type=str,
help="Directory containing mmCIF files to search for templates"
)
parser.add_argument(
"output_dir", type=str,
help='''Directory in which to output checkpoints, logs, etc. Ignored
if not on rank 0'''
)
parser.add_argument(
"max_template_date", type=str,
help='''Cutoff for all templates. In training mode, templates are also
filtered by the release date of the target'''
)
parser.add_argument(
"--train_mmcif_data_cache_path", type=str, default=None,
help="Path to the json file which records all the information of mmcif structures used during training"
)
parser.add_argument(
"--use_single_seq_mode", type=str, default=False,
help="Use single sequence embeddings instead of MSAs."
)
parser.add_argument(
"--distillation_data_dir", type=str, default=None,
help="Directory containing training PDB files"
)
parser.add_argument(
"--distillation_alignment_dir", type=str, default=None,
help="Directory containing precomputed distillation alignments"
)
parser.add_argument(
"--val_data_dir", type=str, default=None,
help="Directory containing validation mmCIF files"
)
parser.add_argument(
"--val_alignment_dir", type=str, default=None,
help="Directory containing precomputed validation alignments"
)
parser.add_argument(
"--val_mmcif_data_cache_path", type=str, default=None,
help="path to the json file which records all the information of mmcif structures used during validation"
)
parser.add_argument(
"--kalign_binary_path", type=str, default='/usr/bin/kalign',
help="Path to the kalign binary"
)
parser.add_argument(
"--train_filter_path", type=str, default=None,
help='''Optional path to a text file containing names of training
examples to include, one per line. Used to filter the training
set'''
)
parser.add_argument(
"--distillation_filter_path", type=str, default=None,
help="""See --train_filter_path"""
)
parser.add_argument(
"--obsolete_pdbs_file_path", type=str, default=None,
help="""Path to obsolete.dat file containing list of obsolete PDBs and
their replacements."""
)
parser.add_argument(
"--template_release_dates_cache_path", type=str, default=None,
help="""Output of scripts/generate_mmcif_cache.py run on template mmCIF
files."""
)
parser.add_argument(
"--use_small_bfd", type=bool_type, default=False,
help="Whether to use a reduced version of the BFD database"
)
parser.add_argument(
"--seed", type=int, default=None,
help="Random seed"
)
parser.add_argument(
"--deepspeed_config_path", type=str, default=None,
help="Path to DeepSpeed config. If not provided, DeepSpeed is disabled"
)
parser.add_argument(
"--checkpoint_every_epoch", action="store_true", default=False,
help="""Whether to checkpoint at the end of every training epoch"""
)
parser.add_argument(
"--early_stopping", type=bool_type, default=False,
help="Whether to stop training when validation loss fails to decrease"
)
parser.add_argument(
"--min_delta", type=float, default=0,
help="""The smallest decrease in validation loss that counts as an
improvement for the purposes of early stopping"""
)
parser.add_argument(
"--patience", type=int, default=3,
help="Early stopping patience"
)
parser.add_argument(
"--resume_from_ckpt", type=str, default=None,
help="Path to a model checkpoint from which to restore training state"
)
parser.add_argument(
"--resume_model_weights_only", type=bool_type, default=False,
help="Whether to load just model weights as opposed to training state"
)
parser.add_argument(
"--resume_from_jax_params", type=str, default=None,
help="""Path to an .npz JAX parameter file with which to initialize the model"""
)
parser.add_argument(
"--log_performance", type=bool_type, default=False,
help="Measure performance"
)
parser.add_argument(
"--wandb", action="store_true", default=False,
help="Whether to log metrics to Weights & Biases"
)
parser.add_argument(
"--experiment_name", type=str, default=None,
help="Name of the current experiment. Used for wandb logging"
)
parser.add_argument(
"--wandb_id", type=str, default=None,
help="ID of a previous run to be resumed"
)
parser.add_argument(
"--wandb_project", type=str, default=None,
help="Name of the wandb project to which this run will belong"
)
parser.add_argument(
"--wandb_entity", type=str, default=None,
help="wandb username or team name to which runs are attributed"
)
parser.add_argument(
"--script_modules", type=bool_type, default=False,
help="Whether to TorchScript eligible components of them model"
)
parser.add_argument(
"--train_chain_data_cache_path", type=str, default=None,
)
parser.add_argument(
"--distillation_chain_data_cache_path", type=str, default=None,
)
parser.add_argument(
"--train_epoch_len", type=int, default=10000,
help=(
"The virtual length of each training epoch. Stochastic filtering "
"of training data means that training datasets have no "
"well-defined length. This virtual length affects frequency of "
"validation & checkpointing (by default, one of each per epoch)."
)
)
parser.add_argument(
"--log_lr", action="store_true", default=False,
help="Whether to log the actual learning rate"
)
parser.add_argument(
"--config_preset", type=str, default="initial_training",
help=(
'Config setting. Choose e.g. "initial_training", "finetuning", '
'"model_1", etc. By default, the actual values in the config are '
'used.'
)
)
parser.add_argument(
"--_distillation_structure_index_path", type=str, default=None,
)
parser.add_argument(
"--alignment_index_path", type=str, default=None,
help="Training alignment index. See the README for instructions."
)
parser.add_argument(
"--distillation_alignment_index_path", type=str, default=None,
help="Distillation alignment index. See the README for instructions."
)
parser.add_argument(
"--experiment_config_json", default="", help="Path to a json file with custom config values to overwrite config setting",
)
parser.add_argument(
"--gpus", type=int, default=1, help='For determining optimal strategy and effective batch size.'
)
parser.add_argument("--mpi_plugin", action="store_true", default=False,
help="Whether to use MPI for parallele processing")
trainer_group = parser.add_argument_group(
'Arguments to pass to PyTorch Lightning Trainer')
trainer_group.add_argument(
"--num_nodes", type=int, default=1,
)
trainer_group.add_argument(
"--precision", type=str, default='bf16',
help='Sets precision, lower precision improves runtime performance.',
)
trainer_group.add_argument(
"--max_epochs", type=int, default=1,
)
trainer_group.add_argument(
"--log_every_n_steps", type=int, default=25,
)
trainer_group.add_argument(
"--flush_logs_every_n_steps", type=int, default=5,
)
trainer_group.add_argument(
"--num_sanity_val_steps", type=int, default=0,
)
trainer_group.add_argument(
"--reload_dataloaders_every_n_epochs", type=int, default=1,
)
trainer_group.add_argument("--accumulate_grad_batches", type=int, default=1,
help="Accumulate gradients over k batches before next optimizer step.")
args = parser.parse_args()
if(args.seed is None and
((args.gpus is not None and args.gpus > 1) or
(args.num_nodes is not None and args.num_nodes > 1))):
raise ValueError("For distributed training, --seed must be specified")
if(str(args.precision) == "16" and args.deepspeed_config_path is not None):
raise ValueError("DeepSpeed and FP16 training are not compatible")
if(args.resume_from_jax_params is not None and args.resume_from_ckpt is not None):
raise ValueError("Choose between loading pretrained Jax-weights and a checkpoint-path")
main(args)