Skip to content

Latest commit

 

History

History
39 lines (32 loc) · 1.27 KB

README.md

File metadata and controls

39 lines (32 loc) · 1.27 KB

Pytorch Version (BPR: Bayesian Personalized Ranking from Implicit Feedback) Algorithms

Note that I use the movie lens datasets (ml-1m) I used the code from https://github.com/guoyang9/BPR-pytorch

improment

  1. no negative sampe num in my case
  2. predict all negative samples for top k

"""" class BPRData(data.Dataset): def init(self, users, items, candidates, num_items, is_training = True): super(BPRData, self).init() self.users = users self.items = items self.is_training = is_training self.cand = candidates self.num_items = num_items self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

def __len__(self):
    return len(self.users)

def __getitem__(self, idx):
    if self.is_training == True:
        while True:
            # Negative sample
            positive_list = self.cand[int(self.users[idx])]
            negative_sample = random.randint(0, self.num_items - 1)
            if negative_sample not in positive_list:
                break

    user = self.users[idx]
    item_i = self.items[idx]
    item_j = negative_sample if \
            self.is_training else self.items[idx]

    return user, item_i, item_j

"""