We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
对于大通道,比如1024个channels的网络,比如最简单的 单层网络
class conv_1024_1024_33_d1(torch.nn.Module): def init(self): self.in_channel = 1024 self.out_channel = 1024 self.kernel_w = 3 self.kernel_h = 3 super(conv_1024_1024_33_d1, self).init() self.conv = torch.nn.Sequential( OrderedDict([("conv1", torch.nn.Conv2d(self.in_channel, self.out_channel, self.kernel_w, 1, 1))]) )
def forward(self, x): return self.conv(x)
用这个pytorch转onnx,然后调用trt的execute接口跑出来的耗时结合这层的计算量计算出来的算力(模型计算量/耗时)大于平台标称算力,这是由于trt加速的原因还是什么?有大神知道的么?
The text was updated successfully, but these errors were encountered:
No branches or pull requests
对于大通道,比如1024个channels的网络,比如最简单的 单层网络
class conv_1024_1024_33_d1(torch.nn.Module):
def init(self):
self.in_channel = 1024
self.out_channel = 1024
self.kernel_w = 3
self.kernel_h = 3
super(conv_1024_1024_33_d1, self).init()
self.conv = torch.nn.Sequential(
OrderedDict([("conv1", torch.nn.Conv2d(self.in_channel, self.out_channel, self.kernel_w, 1, 1))])
)
用这个pytorch转onnx,然后调用trt的execute接口跑出来的耗时结合这层的计算量计算出来的算力(模型计算量/耗时)大于平台标称算力,这是由于trt加速的原因还是什么?有大神知道的么?
The text was updated successfully, but these errors were encountered: