Skip to content

Latest commit

 

History

History
 
 

tasks

QD Tasks

The tasks directory provides default scoring_function's to import easily to perform experiments without the boilerplate code so that the main script is kept simple and is not bloated. It provides a set of fixed tasks that is not meant to be modified. If you are developing and require the flexibility of modifying the task and the details that come along with it, we recommend copying and writing your own custom scoring_function in your main script instead of importing from tasks.

The tasks directory also serves as a way to maintain a QD benchmark task suite that can be easily accesed. We implement several benchmark task across a range of domains. The tasks here are classical tasks from QD literature as well as more recent benchmarks tasks proposed at the QD Benchmarks Workshop at GECCO 2022.

Arm

Task Parameter Dimensions Parameter Bounds Descriptor Dimensions Descriptor Bounds Description
Arm n $[0,1]^n$ 2 $[0,1]^2$
Noisy Arm n $[0,1]^n$ 2 $[0,1]^2$

Notes:

  • the parameter space is normalized between $[0,1]$ which corresponds to $[0,2\pi]$
  • the descriptor space (end-effector x-y position) is normalized between $[0,1]$

Example Usage

import jax
from qdax.tasks.arm import arm_scoring_function

random_key = jax.random.PRNGKey(0)

# Get scoring function
scoring_fn = arm_scoring_function

# Get Task Properties (parameter space, descriptor space, etc.)
min_param, max_param = 0., 1.
min_desc, max_desc = 0., 1.

# Get initial batch of parameters
num_param_dimensions = ...
init_batch_size = ...
random_key, _subkey = jax.random.split(random_key)
initial_params = jax.random.uniform(
    _subkey,
    shape=(init_batch_size, num_param_dimensions),
    minval=min_param,
    maxval=max_param,
)

# Get number of descriptor dimensions
desc_size = 2

Standard Functions

Task Parameter Dimensions Parameter Bounds Descriptor Dimensions Descriptor Bounds Description
Sphere n $[0,1]^n$ 2 $[0,1]^n$
Rastrigin n $[0,1]^n$ 2 $[0,1]^n$
Rastrigin-Projection n $[0,1]^n$ 2 $[0,1]^n$

Example Usage

import jax
from qdax.tasks.standard_functions import sphere_scoring_function

random_key = jax.random.PRNGKey(0)

# Get scoring function
scoring_fn = sphere_scoring_function

# Get Task Properties (parameter space, descriptor space, etc.)
min_param, max_param = 0., 1.
min_desc, max_desc = 0., 1.

# Get initial batch of parameters
num_param_dimensions = ...
init_batch_size = ...
random_key, _subkey = jax.random.split(random_key)
initial_params = jax.random.uniform(
    _subkey,
    shape=(init_batch_size, num_param_dimensions),
    minval=min_param,
    maxval=max_param,
)

# Get number of descriptor dimensions
desc_size = 2

Hyper-Volume Functions

"Hypervolume-based Benchmark Functions for Quality Diversity Algorithms" by Jean-Baptiste Mouret

Task Parameter Dimensions Parameter Bounds Descriptor Dimensions Descriptor Bounds Description
Square n $[0,1]^n$ n $[0,1]^n$
Checkered n $[0,1]^n$ n $[0,1]^n$
Empty Circle n $[0,1]^n$ n $[0,1]^n$
Non-continous Islands n $[0,1]^n$ n $[0,1]^n$
Continous Islands n $[0,1]^n$ n $[0,1]^n$

Example Usage

import jax
from qdax.tasks.hypervolume_functions import square_scoring_function

random_key = jax.random.PRNGKey(0)

# Get scoring function
scoring_fn = square_scoring_function

# Get Task Properties (parameter space, descriptor space, etc.)
min_param, max_param = 0., 1.
min_desc, max_desc = 0., 1.

# Get initial batch of parameters
num_param_dimensions = ...
init_batch_size = ...
random_key, _subkey = jax.random.split(random_key)
initial_params = jax.random.uniform(
    _subkey,
    shape=(init_batch_size, num_param_dimensions),
    minval=min_param,
    maxval=max_param,
)

# Get number of descriptor dimensions
desc_size = num_param_dimensions

QD Suite

"Towards QD-suite: developing a set of benchmarks for Quality-Diversity algorithms" by Achkan Salehi and Stephane Doncieux

Task Parameter Dimensions Parameter Bounds Descriptor Dimensions Descriptor Bounds Description
archimedean-spiral-v0 1 $[0,\alpha\pi]^n$ (angle param.)
$[0,max-arc-length]$ (arc length param.)
1 (geodesic BD)
2 (euclidean BD)
$[0,max-arc-length]$ (geodesic BD)
$[-radius,radius]^2$ (euclidean BD)
SSF-v0 $n$ Unbounded 1 $[ 0 ,$$)$
deceptive-evolvability-v0
$n$ (2 by default) Bounded area including the two gaussian peaks 1 $[0,max-sum-gaussians]$

Example Usage

import math
from qdax.tasks.qd_suite import archimedean_spiral_v0_angle_euclidean_task

task = archimedean_spiral_v0_angle_euclidean_task

# Get scoring function
scoring_fn = task.scoring_function

# Get Task Properties (parameter space, descriptor space, etc.)
min_param, max_param = task.get_min_max_params()
min_desc, max_desc = task.get_bounded_min_max_descriptor()  # To consider bounded Descriptor space
# If the task has a descriptor space that is not bounded, then the unbounded descriptor
# space can be obtained via the following:
# min_bd, max_bd = task.get_min_max_bd()

# Get initial batch of parameters
initial_params = task.get_initial_parameters(batch_size=...)

# Get number of descriptor dimensions
desc_size = task.get_descriptor_size()

Brax-RL

Task Parameter Dimensions Parameter Bounds Descriptor Dimensions Descriptor Bounds Description
pointmaze NN params Unbounded 2 $[-1,1]^2$
hopper_uni NN params Unbounded 1 $[0,1]$
walker2d_uni NN params Unbounded 2 $[0,1]^2$
halfcheetah_uni NN params Unbounded 2 $[0,1]^2$
ant_uni NN params Unbounded 4 $[0,1]^4$
humanoid_uni NN params Unbounded 2 $[0,1]^2$
ant_omni NN params Unbounded 2 $[-30,30]^2$
humanoid_omni NN params Unbounded 2 $[-30,30]^2$
anttrap NN params Unbounded 2 $[-8,8]\times[0,30]$
antmaze NN params Unbounded 2 $[-5,40]\times[-5,40]$

Notes:

  • the parameter dimensions for default Brax-RL tasks depend on the size and architecture of the neural network used and can be customized and changed easily. If not set, a network size of two hidden layers of size 64 is used.

Example Usage

See Example in Notebook

Jumanji-RL

QDax provide utils to interact easily with the suite of environments implemented in Jumanji.

Example Usage

See Example in Notebook