From 56c0f735f6a12ba31f7b0c3e30e8e17e9902cd5c Mon Sep 17 00:00:00 2001 From: Lionel Zoubritzky Date: Tue, 7 Jun 2022 14:46:46 +0200 Subject: [PATCH] [ci skip] minor README fix --- README.md | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/README.md b/README.md index ad6ab15..5e6d7d3 100644 --- a/README.md +++ b/README.md @@ -11,7 +11,7 @@ or [`SortedPeriodicGraphEmbedding`](https://liozou.github.io/PeriodicGraphEmbeddings.jl/dev/types/#PeriodicGraphEmbeddings.SortedPeriodicGraphEmbedding-Union{Tuple{T},%20Tuple{D},%20Tuple{PeriodicGraph{D},%20AbstractMatrix{T}%20where%20T,%20Cell}}%20where%20{D,%20T}) methods from [PeriodicGraphEmbeddings.jl](https://github.com/Liozou/PeriodicGraphEmbeddings.jl): -```jldoctest +```julia julia> tbo = PeriodicGraph3D("3 1 2 0 0 0 1 3 0 0 0 1 4 0 0 0 2 5 0 0 0 2 6 0 0 0 2 7 0 0 0 3 6 0 0 1 3 8 0 0 0 3 9 0 0 0 4 6 1 0 0 4 10 0 0 0 4 11 0 0 0 5 12 0 0 0 5 13 0 0 0 7 12 1 1 -1 7 13 0 1 0 8 12 0 0 0 8 14 0 0 0 9 12 1 1 0 9 14 0 1 0 10 13 0 0 0 10 14 0 0 0 11 13 1 1 0 11 14 1 1 -1"); julia> equilibrium(tbo) @@ -25,7 +25,7 @@ The implementation is optimized through a custom solver specialized for the exac resolution of sparse integer linear system through [Dixon's algorithm](https://doi.org/10.1007/bf01459082). The solver is directly accessible through the `dixon_solve` function: -```jldoctest +```julia julia> A = sparse([-3 0 2 0; 0 -5 2 3; 2 2 -2 0; 0 3 0 -3]); julia> Y = [1 1; 0 2; 1 -1; 0 0]; @@ -34,7 +34,7 @@ julia> A * dixon_solve(Val(2), A, Y) == Y true ``` -(the first argument of `dixon_solve` must be `size(Y)[2]`). +(the first argument of `dixon_solve` must be `Val(size(Y)[2])`). The package also exposes a `rational_solve` function which solves the same systems through a simpler LU decomposition approach. It serves as fallback to `dixon_solve` when Dixon's