forked from yuvalpinter/m3gm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
math_utils.py
27 lines (23 loc) · 950 Bytes
/
math_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import dynet as dy
import numpy as np
__author__ = "Yuval Pinter, 2018"
def softmaxify(neg_assocs):
"""
stable softmax function built before dynet's utility was efficient
:param neg_assocs: association scores for negative samples
:return: numpy array of softmaxed scores
"""
#return dy.softmax(dy.concatenate(list(neg_assocs.values()))).value() # can replace 4 lines below
neg_assoc_scores = np.array(list(neg_assocs.values()))
exp_neg_assocs = np.exp(neg_assoc_scores - np.max(neg_assoc_scores))
assoc_scores_sumexp = np.sum(exp_neg_assocs)
return exp_neg_assocs / assoc_scores_sumexp
def dyagonalize(col):
"""
A convoluted way to make a dynet vector into a dynet matrix where it's the diagonal
God I hope there's a better way.
:param col: column vector in dynet format
"""
col_dim = col.dim()[0][0]
nump_eye = np.eye(col_dim)
return dy.cmult(col, dy.inputTensor(nump_eye))