-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredictCLASS.R
144 lines (91 loc) · 4.37 KB
/
predictCLASS.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
### This function takes the posterior parameters AND predicts CLUSTER MEMEBERSHIP for the new points
#### The fundamental assumption is that EACH NEW TEST POINT IS CONDITIONALLY INDEPENDENT on the OTHER POINTS
#### We predict value of one point GIVEN ONLY ITS MOLECULAR DATA
### The final output is Time for the new samples, ONE AT A TIME
predictCLASS = function(Y.input){
source('priorPARAMETERS.R')
Y.new <- Y.input
N.new <- nrow(Y.new)
c.new.list <- list(0)
## The number of posterior samples
print("GOING THROUGH MCMC Samples")
pb <- txtProgressBar(min = 1, max = Nps , style = 3)
ctemp.new <- c(0)
modelweights <- c(0)
for (count in 1:Nps){
## Assign the parameters to the posterior sample
ctemp <- c.list[[count]]
mu <- mu.list[[count]]
S <- S.list[[count]]
g <- table(factor(ctemp, levels = 1:K))
activeclass <- which(g!=0)
## The table function helps converting the data point specific indicator variables to class specific indicator variables
kminus <- length(activeclass)
# active <- activeclass
#Two Auxilary Variables
#The name of the auxilary variables are taken to be one and two more than the maximum value in the already active cluster set
activeclass <- append(activeclass, max(activeclass)+1)
activeclass <- append(activeclass, max(activeclass)+1)
active <- activeclass
### Assigning values to parameters
priortwo <- NA
priortwo <- priordraw(beta, W, epsilon, ro, r, si,N,D, sig2.dat)
mu[active[kminus+1],1:D] <- priortwo$mu
S[active[kminus+1],1:D,1:D] <- priortwo$Sigma[1:D,1:D]
priorthree <- NA
priorthree <- priordraw(beta, W, epsilon, ro, r, si,N,D, sig2.dat)
mu[active[kminus+2],1:D] <- priorthree$mu
S[active[kminus+2],1:D,1:D] <- priorthree$Sigma[1:D,1:D]
###### Some quantities used to store probabilities
posteriorweight <- matrix(0, nrow = length(active), ncol = N.new)
weights <- matrix(0, nrow = length(active), ncol = N.new)
weights.final <- c(0)
ctemp.new <- c(0)
## This can't be parallelized !!!!!
for(l in 1:N.new) {
## Calculating the Expectations and also the normalization constant for the Expectation
for (j in 1:kminus) {
posteriorweight[j,l] <- log(g[active[j]]/ (N-1+alpha)) + dMVN(as.vector(t(Y.new[l,1:D])), mean = mu[active[j],1:D], Q = S[active[j],1:D,1:D], log =TRUE)
}
res <- try(dMVN(as.vector(t(Y.new[l,1:D])), mean = mu[active[kminus+1],1:D], Q= S[active[kminus+1],1:D,1:D]), silent=TRUE)
if (class(res) == "try-error"){
posteriorweight[kminus+1,l] <- -Inf
} else{
posteriorweight[kminus+1,l] <- log(alpha/ (N-1+alpha)) + dMVN(as.vector(t(Y.new[l,1:D])), mean = mu[active[kminus+1],1:D], Q= S[active[kminus+1],1:D,1:D], log = TRUE)
}
res2 <- try(dMVN(as.vector(t(Y.new[l,1:D])), mean = mu[active[kminus+2],1:D], Q= S[active[kminus+2],1:D,1:D]), silent=TRUE)
if (class(res) == "try-error"){
posteriorweight[kminus+2,l] <- -Inf
} else{
posteriorweight[kminus+2,l] <- log(alpha/ (N-1+alpha)) + dMVN(as.vector(t(Y.new[l,1:D])), mean = mu[active[kminus+2],1:D], Q= S[active[kminus+2],1:D,1:D], log = TRUE)
}
weights[,l] <- exp(posteriorweight[,l])/sum(exp(posteriorweight[,l]))
if (sum(exp(posteriorweight[,l])) < 1e-200){
ctemp.new[l] <- sample(active, 1, prob = rep(1,length(active)), replace = TRUE)
} else {
ctemp.new[l] <- sample(active, 1, prob= weights[,l], replace = TRUE)
}
weights.final[l] <- dMVN(as.vector(t(Y.new[l,1:D])), mean = mu[ctemp.new[l],1:D], Q = S[ctemp.new[l],1:D,1:D], log =TRUE)
}
modelweights[count] <- sum(weights.final)
c.new.list[[count]] <- ctemp.new
Sys.sleep(0.1)
setTxtProgressBar(pb, count)
}
## Converting the list to a matrix
c.matrix.new <- matrix(NA, nrow = N.new, ncol = Nps)
for( h in 1:Nps){
c.matrix.new[,h] <- c.new.list[[h]]
}
c.matrix.new <<- c.matrix.new
# ## As the clusters are different we switch the labels
# for ( i in 1:N.new){
# if(mpear2$cl[i] ==1){
# c.sbc.new[i] = 1
# } else {
# c.sbc.new[i] = 2
# }}
#
#
test.modelweights <<- modelweights
}