-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredictADHOCGBMII.R
102 lines (69 loc) · 3.52 KB
/
predictADHOCGBMII.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
### This function takes the posterior parameters AND predicts CLUSTER MEMEBERSHIP for the new points
### The posterior parameters being the RECOVERED CLUSTER MEMBERSHIP
#### THEN IT FITS A LOGISTIC/MULTINOMIAL regression FOR LINEAR SEPARABILITY
#### WE CAN ALSO EXPLORE NON-LINEAR Classifiers as k-SVM or k-DA
### Check to see if this gives differences to state of the art
Y <- cbind(Y1,Y2)
Y.new <- cbind(Y1.test,Y2.test)
label.train <- c.sbc
#### Fitting a penalized logistic regression Model to make predictions ####
reg <- cv.glmnet(x = Y, y = as.factor(label.train), family = "multinomial")
reg.new <- predict(object = reg, newx = Y.new, s = "lambda.min", type="class")
label.test <- as.numeric(reg.new)
survdiff(smod.new ~ label.test)
### Fit a penalized Cox regression model
linear.sbclog.prediction <- c(0)
for ( q in 1:F){
ind <- which(label.train == q)
ind.new <- which(label.test == q)
reg.aft <- cv.glmnet(x = Y[ind,], y = Surv(exp(time[ind]),censoring[ind]), family = "cox", alpha = 0.0)
linear.sbclog.prediction[ind.new] <- predict(object =reg.aft, newx = Y.new[ind.new,], s= "lambda.min")
}
predCIndex.sbclog.pcox <- as.numeric(survConcordance(smod.new ~ linear.sbclog.prediction)[1])
#### Using k-NN to make predictions ####
#### Use L2 penalized Cox regression ####
label.test <- knn(train = Y, test = Y.new, cl = label.train, k = F)
survdiff(smod.new ~ label.test)
linear.sbcknn.prediction <- c(0)
for ( q in 1:F){
ind <- which(label.train == q)
ind.new <- which(label.test == q)
reg.aft <- cv.glmnet(x = Y[ind,], y = Surv(exp(time[ind]),censoring[ind]), family = "cox", alpha = 0.0)
linear.sbcknn.prediction[ind.new] <- predict(object =reg.aft, newx = Y.new[ind.new,], s= "lambda.min")
}
predCIndex.sbcknn.pcox <- as.numeric(survConcordance(smod.new ~ linear.sbcknn.prediction)[1])
### Fitting a kSVM #####
library(e1071)
library(kernlab)
df <- data.frame(cbind(c.sbc,Y))
sig <- sigest(c.sbc ~.,data = df)
range.sig <- seq(from = sig[1],to = sig[3], length.out = 25)
obj.base <- tune(svm, train.x = Y, train.y = factor(c.sbc), ranges = list(gamma = 2^(-10:14), cost = 2^(-10:14)), tunecontrol = tune.control(sampling = "cross"))
sigma.final <- obj.base$best.parameters$gamma
cost.final <- obj.base$best.parameters$cost
# Training the Classifier
ksvm.verk = ksvm(Y, factor(c.sbc), kernel = "rbfdot",kpar = list(sigma =sigma.final),C= cost.final, prob.model =TRUE)
## Predicting
labels.ksvm <- predict(ksvm.verk ,Y.new, type = "response")
survdiff(smod.new ~ labels.ksvm)
label.test <- labels.ksvm
### Now fitting penalized Cox regression in R ###
linear.sbcrbf.prediction <- c(0)
for ( q in 1:F){
ind <- which(label.train == q)
ind.new <- which(label.test == q)
reg.aft <- cv.glmnet(x = Y[ind,], y = Surv(exp(time[ind]),censoring[ind]), family = "cox", alpha = 0.5)
linear.sbcrbf.prediction[ind.new] <- predict(object =reg.aft, newx = Y.new[ind.new,], s= "lambda.min")
}
predCIndex.sbcrbf.pcox <- as.numeric(survConcordance(smod.new ~ linear.sbcrbf.prediction)[1])
##### Now fitting penalized AFT ###
linear.sbcrbf.prediction <- c(0)
for ( q in 1:F){
ind <- which(label.train == q)
ind.new <- which(label.test == q)
reg.aft <- cv.glmnet(x = Y[ind,], y = time[ind], family = "gaussian", alpha = 0.5)
linear.sbcrbf.prediction[ind.new] <- predict(object =reg.aft, newx = Y.new[ind.new,], s= "lambda.min")
}
predCIndex.sbcrbf.aft <- as.numeric(survConcordance(smod.new ~ linear.sbcrbf.prediction)[1])
##### Choose that cluster prediction method that gives significant differences in Survival curves
c.sbc.new <- label.test