-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmultipredictCLASS.R
183 lines (145 loc) · 7.41 KB
/
multipredictCLASS.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
#### this file just takes the new molecular data
#### THIS function predicts the Class of the new Data Points
#### It is Based on the PredictChineseAFT function
multipredictCLASS = function(Y1.test, Y2.test){
N.new <<- nrow(Y1.test)
c.new.list <- list(0)
## The number of posterior samples
Nps <<- as.integer(iter/ iter.thin)
That.new <- time.new
print("GOING THROUGH MCMC Samples")
pb <- txtProgressBar(min = 1, max = Nps , style = 3)
gmmx1.tmp <- list(0)
gmmx2.tmp <- list(0)
regy1.tmp <- list(0)
regy2.tmp <- list(0)
Ytemp1 <- Y1.test
Ytemp2 <- Y2.test
Ytemp1.scaled <- matrix(NA, nrow = N, ncol = D1)
Ytemp2.scaled <- matrix(NA, nrow = N, ncol = D2)
modelweights <- c(0)
for (count in 1:Nps){
## Assign the parameters to the posterior sample
ctemp <- c.list[[count]]
gmmx1.tmp <- est.gmmx1[[count]]
gmmx2.tmp <- est.gmmx2[[count]]
regy1.tmp <- est.regy1[[count]]
regy2.tmp <- est.regy2[[count]]
g <- table(factor(ctemp, levels = 1:K))
activeclass <- which(g!=0)
## The table function helps converting the data point specific indicator variables to class specific indicator variables
kminus <- length(activeclass)
## Two Auxilary Variables
## The name of the auxilary variables are taken to be one and two more than the maximum value in the already active cluster set
activeclass <- append(activeclass, max(activeclass)+1)
activeclass <- append(activeclass, max(activeclass)+1)
active <- activeclass
### Assigning values to parameters
priorone1 <- NA
priorone2 <- NA
### Draw the values of two auxilary parameters from Prior Distribution
source('priorPARAMETERS.R')
#priorone1 <- priordraw(beta, gmmx1$W, gmmx1$epsilon, ro, r, si,N,D1, sig2.dat)
repeat {
priorone1 <- priordraw(gmmx1.tmp$beta, gmmx1.tmp$W, gmmx1.tmp$epsilon, gmmx1.tmp$ro, r, si,N,D1, sig2.dat)
res <- try(chol(priorone1$Sigma), silent = TRUE)
if (class(res) != "try-error"){
break
}
}
gmmx1.tmp$mu[active[kminus+1],1:D1] <- priorone1$mu
gmmx1.tmp$S[active[kminus+1],1:D1,1:D1] <- priorone1$Sigma
regy1.tmp$beta0[active[kminus+1]] <- priorone1$beta0
regy1.tmp$sigma2[active[kminus+1]] <- priorone1$sigma2
regy1.tmp$betahat[active[kminus+1],1:D1] <- priorone1$betahat
regy1.tmp$lambda2[active[kminus+1]] <- priorone1$lambda2
regy1.tmp$tau2[active[kminus+1], 1:D1] <- priorone1$tau2
repeat {
priorone2 <- priordraw(gmmx2.tmp$beta, gmmx2.tmp$W, gmmx2.tmp$epsilon, gmmx2.tmp$ro, r, si,N, D2, sig2.dat)
res <- try(chol(priorone2$Sigma), silent = TRUE)
if (class(res) != "try-error"){
break
}
}
gmmx2.tmp$mu[active[kminus+1],1:D2] <- priorone2$mu
gmmx2.tmp$S[active[kminus+1],1:D2,1:D2] <- priorone2$Sigma
regy2.tmp$beta0[active[kminus+1]] <- priorone2$beta0
regy2.tmp$sigma2[active[kminus+1]] <- priorone2$sigma2
regy2.tmp$betahat[active[kminus+1],1:D2] <- priorone2$betahat
regy2.tmp$lambda2[active[kminus+1]] <- priorone2$lambda2
regy2.tmp$tau2[active[kminus+1], 1:D2] <- priorone2$tau2
source('priorPARAMETERS.R')
#priorone1 <- priordraw(beta, gmmx1$W, gmmx1$epsilon, ro, r, si,N,D1, sig2.dat)
repeat {
priorone1 <- priordraw(beta, gmmx1$W, gmmx1$epsilon, gmmx1$ro, r, si,N,D1, sig2.dat)
res <- try(chol(priorone1$Sigma),silent = TRUE)
if (class(res) != "try-error"){
break
}
}
gmmx1.tmp$mu[active[kminus+2],1:D1] <- priorone1$mu
gmmx1.tmp$S[active[kminus+2],1:D1,1:D1] <- priorone1$Sigma
regy1.tmp$beta0[active[kminus+2]] <- priorone1$beta0
regy1.tmp$sigma2[active[kminus+2]] <- priorone1$sigma2
regy1.tmp$betahat[active[kminus+2],1:D1] <- priorone1$betahat
regy1.tmp$lambda2[active[kminus+2]] <- priorone1$lambda2
regy1.tmp$tau2[active[kminus+2], 1:D1] <- priorone1$tau2
##priorone2 <- priordraw(beta, gmmx2$W, gmmx2$epsilon, ro, r, si,N,D2, sig2.dat)
repeat {
priorone2 <- priordraw(beta, gmmx2$W, gmmx2$epsilon, gmmx2$ro, r, si,N,D2, sig2.dat)
res <- try(chol(priorone2$Sigma), silent = TRUE)
if (class(res) != "try-error"){
break
}
}
gmmx2.tmp$mu[active[kminus+2],1:D2] <- priorone2$mu
gmmx2.tmp$S[active[kminus+2],1:D2,1:D2] <- priorone2$Sigma
regy2.tmp$beta0[active[kminus+2]] <- priorone2$beta0
regy2.tmp$sigma2[active[kminus+2]] <- priorone2$sigma2
regy2.tmp$betahat[active[kminus+2],1:D2] <- priorone2$betahat
regy2.tmp$lambda2[active[kminus+2]] <- priorone2$lambda2
regy2.tmp$tau2[active[kminus+2], 1:D2] <- priorone2$tau2
#######################################################
ctemp.new = c(0)
weights.final <- c(0)
## This can't be parallelized !!!!!
for(l in 1:N.new) {
posterior <- matrix(NA, nrow = length(active), ncol = 1)
Y.new.sc1 <- matrix(0, nrow = N.new, ncol =D1)
Y.new.sc2 <- matrix(0, nrow = N.new, ncol =D2)
## Calculating the probabalities for drawing the value of c_i from the active classes
for (j in 1:kminus) {
clust <- which(ctemp == active[j])
posterior[j] <- log(g[active[j]] /(N-1+alpha)) + dMVN(x = as.vector(t(Ytemp1[l,])), mean = gmmx1.tmp$mu[active[j],1:D1], Q = gmmx1.tmp$S[active[j],1:D1,1:D1], log = TRUE) + dMVN(x = as.vector(t(Ytemp2[l,])), mean = gmmx2.tmp$mu[active[j],1:D2], Q = gmmx2.tmp$S[active[j],1:D2,1:D2], log =TRUE)
}
posterior[kminus+1] <- log((0.5 * alpha) /(N-1+alpha)) + dMVN(x = as.vector(t(Ytemp1[l,])), mean = gmmx1.tmp$mu[active[kminus+1],1:D1], Q = gmmx1.tmp$S[active[kminus+1],1:D1,1:D1], log = TRUE) + dMVN(x = as.vector(t(Ytemp2[l,])), mean = gmmx2.tmp$mu[active[kminus+1],1:D2], Q = gmmx2.tmp$S[active[kminus+1],1:D2,1:D2], log = TRUE)
posterior[kminus+2] <- log((0.5 * alpha) /(N-1+alpha)) + dMVN(x = as.vector(t(Ytemp1[l,])), mean = gmmx1.tmp$mu[active[kminus+2],1:D1], Q = gmmx1.tmp$S[active[kminus+2],1:D1,1:D1], log = TRUE) + dMVN(x = as.vector(t(Ytemp2[l,])), mean = gmmx2.tmp$mu[active[kminus+2],1:D2], Q = gmmx2.tmp$S[active[kminus+2],1:D2,1:D2], log = TRUE)
## Calculating the normalization constant for probabilities
post <- exp(posterior)
if (sum(post) > 0){
ctemp.new[l] <- sample(active, 1, prob= post, replace = TRUE)
} else {
ctemp.new[l] <- sample(active, 1)
}
weights.final[l] <- dMVN(x = as.vector(t(Ytemp1[l,1:D1])), mean = gmmx1.tmp$mu[ctemp.new[l] ,1:D1], Q = gmmx1.tmp$S[ctemp.new[l] ,1:D1,1:D1], log = TRUE) + dMVN(x = as.vector(t(Ytemp2[l,1:D2])), mean = gmmx2.tmp$mu[ctemp.new[l],1:D2], Q = gmmx2.tmp$S[ctemp.new[l],1:D2,1:D2], log =TRUE)
}
modelweights[count] <- sum(weights.final)
c.new.list[[count]] <- ctemp.new
Sys.sleep(0.1)
setTxtProgressBar(pb, count)
}
c.matrix.new <- matrix(NA, nrow = N.new, ncol = Nps)
for( h in 1:Nps){
c.matrix.new[,h] <- c.new.list[[h]]
}
c.matrix.new <<- c.matrix.new
### Build A consensus clustering based on the posterior matrix for both training and testing labels
psm2 <- comp.psm(t(c.matrix.new))
mpear2 <- maxpear(psm2)
adjustedRandIndex(c.true.new,mpear2$cl)
### Generally the MPEAR output needs post-processing
### If we build a cluster specific sbc approach
c.sbc.new <<- mpear2$cl
#### To calculate the posterior probabilities
test.modelweights <<- modelweights
}