-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloadSBC-BC-signature.R
43 lines (26 loc) · 1.54 KB
/
loadSBC-BC-signature.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
### This file loads SBC gene signature ####
loadSBC-BC-signature = function(Y.ashar.pretrain, time, censoring){
# train.index <- pheno.vijver$Label_Traing_and_Validation == 'Training'
# test.index <- pheno.vijver$Label_Traing_and_Validation == 'Validation'
######## Prefiltering of the Genes ############################### ###########################
######### Using Univariate Cox's Model for Ranking of the Survival Power of the Genes ########
######## Using T-test (or K way Anova) for Ranking of Clustering Power of the Genes ###########
######## The Class Labels ARE WHETHER METASTATIS OCCURED OR NOT ###############################
surv.obj <- Surv(time,censoring)
coeff.sig <- c(0)
pvalue.sig <- c(0)
pvalue.anova <- c(0)
for ( i in 1:ncol(Y.ashar.pretrain)){
q1 <- unlist(summary(coxph(surv.obj ~ Y.ashar.pretrain[,i], data = as.data.frame(Y.ashar.pretrain))))
pvalue.sig[i] <- q1$logtest.pvalue
q2 <- unlist(summary(aov(as.numeric(censoring) ~ as.numeric(Y.ashar.pretrain[,i]), data=as.data.frame(Y.ashar.pretrain)) ))
pvalue.anova[i] <- as.numeric(q2[9])
}
###### Adjusting p-values for Multiple Test Correction
pvalue.sig.adj <- p.adjust(pvalue.sig, method = "fdr")
pvalue.anova.adj <- p.adjust(pvalue.anova, method = "fdr")
sum(((pvalue.anova.adj < 0.04) & (pvalue.sig.adj < 0.05)) + 0)
signature <- ((pvalue.anova.adj < 0.04) & (pvalue.sig.adj < 0.05))
probes.signature <- colnames(Y.ashar.pretrain)[signature]
relev <- list('signature.sbc'= signature)
}