-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalculateLIKELIHOOD.R
46 lines (31 loc) · 1.42 KB
/
calculateLIKELIHOOD.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
loglikelihood = function(c,Y,mu,S,alpha,That, beta0, betahat, sigma2, lambda2, tau2, K, epsilon, W, beta, ro,D, r, si, Time,N, sig2.dat) {
disclass <- table(factor(c, levels = 1:K))
activeclass <- which(disclass!=0)
Ytemp <- Y
Ytemp.scaled <- matrix(NA, nrow = N, ncol = D)
for ( i in 1:length(activeclass)) {
clust <- which(c == activeclass[i])
if (length(clust)==1){
Ytemp.scaled[clust,1:D] <- matrix(0, nrow =1, ncol =D)
} else {
Ytemp.scaled[clust,1:D] <- scale(Ytemp[clust,1:D], center = TRUE, scale = TRUE)
}
}
loglikelihood <-c(0)
GMMlikelihood <- c(0)
AFTlikelihood <- c(0)
for (j in 1:length(activeclass)) {
loglikelihood[j] <- 0
clust <- which(c == activeclass[j])
luk1 <- c(0)
luk2 <- c(0)
for ( l in 1:length(clust)) {
luk1[l] <- dMVN(x = as.vector(t(Y[clust[l],1:D])), mean = mu[activeclass[j],1:D], Q = S[activeclass[j],1:D,1:D], log =TRUE)
luk2[l] <- dnorm(x = That[clust[l]], mean = beta0[activeclass[j]] + betahat[activeclass[j],1:D] %*% as.vector(t(Ytemp.scaled[clust[l],1:D])), sd = sqrt(sigma2[activeclass[j]]) , log =TRUE)
}
GMMlikelihood[j] <- sum(luk1)
AFTlikelihood[j] <- sum(luk2)
loglikelihood[j] <- GMMlikelihood[j] + AFTlikelihood[j]
}
list('loglikelihood' = sum(loglikelihood),'GMMlikelihood' = sum(GMMlikelihood), 'AFTlikelihood' = sum(AFTlikelihood))
}