-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMCMCanalyze.R
105 lines (76 loc) · 3.26 KB
/
MCMCanalyze.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
############# TRAININIG DATA ###########################################
#######################################################################
########################################################################
#### This function calculates some important metrices for the TRAINING DATA Data
#### Adjusted RandIndex
#### C-Index
#### Point Estimate of Clsuter Assignments
##### Brier Scores for feature Selection
MCMCanalyze = function(){
########## ANLAYSING THE MCMC samples AND CALCULATING METRICES #######################################################
source('linearprediction.R')
count <- Nps
final.rand <- c(0)
############ The Matrices that will store the results #################################################
##### Class Assignments ########################
c.matrix <- matrix(NA, nrow = N, ncol = count)
recovCIndex.sbc <- c(0)
recovCIndex.sbc.paft <- c(0)
################ Begin Analysig the MCMC samples #######################################################
require(Hmisc)
for (h in 1:Nps){
### See C-Index (concordance index) returned by the model
surv.aft <- Surv(exp(time),censoring)
### Predict Time from the model
tem.tim <- predicttime(c.list[[h]], Y, That.list[[h]], Time, beta0.list[[h]], betahat.list[[h]], sigma2.list[[h]])$predicttime
library(Hmisc)
recovCIndex.sbc[h] <- survConcordance(surv.aft ~ exp(-tem.tim))[[1]]
## try to fit a Cluster-specific AFT model on top of it ##
###### penAFT ###################################################################
######## Penalized AFT with k-means clustering ######################################################
sbc.aft <- c(0)
for ( q in 1:F){
ind <- which((c.list[[h]]) == q)
L= length(ind)
time.tmp <- time[ind]
censoring.tmp <- censoring[ind]
Y.tmp <- Y[ind,]
reg <- cv.glmnet(x = Y.tmp, y = time.tmp, family = "gaussian")
coeff.pred <- coef(object =reg, newx = Y.tmp, s= "lambda.min")
sbc.aft[ind] <- predict(object = reg, newx = Y.tmp, s = "lambda.min")
}
recovCIndex.sbc.paft[[h]] <- as.numeric(survConcordance(smod ~ exp(-sbc.aft))[1])
c.matrix[,h] <- c.list[[h]]
}
###############################################
###### Calculating POINT ESTIMATES ############
###############################################
psm <- comp.psm(t(c.matrix))
mpear <- maxpear(psm)
### If we build a cluster specific sbc approach
c.final <<- mpear$cl
c.sbc <<- mpear$cl
active <- as.numeric(rownames(table(c.final)))
############ Time Covariate Slopes FOR Relevant Clusters ############
list.betahat <- list(0)
count = Nps
for ( i in 1:count){
list.betahat[[i]] <- (betahat.list[[i]][active,] != 0) +0
}
Q <- length(active)
matrix.betahat <- array(data = NA, dim =c(Q,count,D))
for ( z in 1:Q){
for ( x in 1:count){
matrix.betahat[z,x,] <- list.betahat[[x]][z,]
}
}
final.betahat <- apply(matrix.betahat,c(1,3),mean)
### Probability of betahat of genes FOR ONE SIMULATION
##colnames(final.betahat) = c(rep("relevant",rel.D),rep("irrelevant",irrel.D))
heatmapdata <- as.data.frame(final.betahat)
heatmap.2(t(as.matrix(heatmapdata)),dendrogram="none", margins=c(6,10), main = "Posterior prob. \n for Selection \n ", cexCol = 0.85, cexRow = 0.7, Rowv = FALSE)
recovCIndex.sbc <<- recovCIndex.sbc
recovCIndex.sbc.paft <<- recovCIndex.sbc.paft
c.final <<- c.final
final.betahat <<- final.betahat
}