diff --git a/404.html b/404.html index edb3c744..ba52ef53 100644 --- a/404.html +++ b/404.html @@ -40,7 +40,7 @@
diff --git a/CODE_OF_CONDUCT.html b/CODE_OF_CONDUCT.html index acf0eb75..5ce56300 100644 --- a/CODE_OF_CONDUCT.html +++ b/CODE_OF_CONDUCT.html @@ -17,7 +17,7 @@ diff --git a/CONTRIBUTING.html b/CONTRIBUTING.html index 23153931..f0175073 100644 --- a/CONTRIBUTING.html +++ b/CONTRIBUTING.html @@ -17,7 +17,7 @@ diff --git a/SUPPORT.html b/SUPPORT.html index 8e451870..7451dbb4 100644 --- a/SUPPORT.html +++ b/SUPPORT.html @@ -17,7 +17,7 @@ diff --git a/articles/TenX_data_download.html b/articles/TenX_data_download.html index d429f474..689339e4 100644 --- a/articles/TenX_data_download.html +++ b/articles/TenX_data_download.html @@ -41,7 +41,7 @@ @@ -119,7 +119,7 @@vignettes/TenX_data_download.Rmd
TenX_data_download.Rmd
10x Genomics provides the files in compressed tarballs
(.tar.gz
file extension). Which is why we’ll need to use
utils::untar()
to decompress the files. This will create
@@ -537,14 +534,12 @@
-
+
## Show the GTF cache location
gtf_cache
#> BFC23
#> "/Users/leocollado/Library/Caches/org.R-project.R/R/BiocFileCache/100014a479f08_gencode.v32.annotation.gtf.gz"
+-## Import into R (takes ~1 min) gtf <- rtracklayer::import(gtf_cache) @@ -564,7 +559,7 @@
From Gencode#> #> FALSE TRUE #> 36572 29
+@@ -177,7 +177,7 @@## Drop the few genes for which we don't have information spe <- spe[!is.na(match_genes), ] @@ -626,7 +621,7 @@
was associated to DLPFC layers. That is, spots with highEnable a friendlier gene searchexpr_chrM_ratio
expr_chrM_ratio
were not randomly located in our Visium slides. -@@ -155,7 +155,7 @@+@@ -167,7 +167,7 @@## Add information used by spatialLIBD rowData(spe)$gene_search <- paste0( rowData(spe)$gene_name, "; ", rowData(spe)$gene_id @@ -646,26 +641,26 @@
Filter the spe objectscran and scuttle packages. Though these steps are not absolutely necessary. -
diff --git a/reference/fetch_data.html b/reference/fetch_data.html index 0054da43..9bf29a2c 100644 --- a/reference/fetch_data.html +++ b/reference/fetch_data.html @@ -25,7 +25,7 @@+-## Remove genes with no data no_expr <- which(rowSums(counts(spe)) == 0) ## Number of genes with no counts length(no_expr) #> [1] 11397
diff --git a/reference/enough_ram.html b/reference/enough_ram.html index 1d9dac5c..0dda4a99 100644 --- a/reference/enough_ram.html +++ b/reference/enough_ram.html @@ -17,7 +17,7 @@+ -+-spe <- spe[-no_expr, , drop = FALSE] ## Remove spots without counts summary(spe$sum_umi) #> Min. 1st Qu. Median Mean 3rd Qu. Max. #> 23 15917 20239 20738 25252 54931
+@@ -138,195 +138,260 @@## If we had spots with no counts, we would remove them if (any(spe$sum_umi == 0)) { @@ -684,7 +679,7 @@
) withCheck objectcolData()
"NA"
. That variable is used by the interactive website to store any manual annotations. -diff --git a/reference/cluster_import.html b/reference/cluster_import.html index 9ab46e00..9f0290c3 100644 --- a/reference/cluster_import.html +++ b/reference/cluster_import.html @@ -20,7 +20,7 @@+## Add a variable for saving the manual annotations spe$ManualAnnotation <- "NA"
Finally, we can now check the final object using @@ -692,14 +687,14 @@
Check object
+-## Check the final dimensions and object size dim(spe) #> [1] 25175 4035
@@ -135,7 +135,7 @@+-lobstr::obj_size(spe) / 1024^2 ## Convert to MB #> 283.86 B
@@ -124,17 +124,19 @@+@@ -112,9 +112,7 @@## Run check_spe() function check_spe(spe) @@ -730,7 +725,7 @@
Explore the dataIntroduction to spatialLIBD vignette available through GitHub or Bioconductor. -
@@ -132,9 +132,7 @@+-## Example visualizations. Let's start with a continuous variable. spatialLIBD::vis_gene( spe = spe, @@ -739,7 +734,7 @@
Explore the data assayname = "counts" )
@@ -109,7 +109,7 @@+@@ -147,7 +147,7 @@## We next create a random cluster label to visualize set.seed(20210428) @@ -786,7 +781,7 @@
Run the interactive website
+@@ -118,7 +118,7 @@## Run our shiny app if (interactive()) { run_app( @@ -806,12 +801,12 @@
Run the interactive website
+-## Locate our documentation files docs_path <- system.file("app", "www", package = "spatialLIBD") docs_path #> [1] "/Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/library/spatialLIBD/app/www"
@@ -166,47 +166,31 @@++list.files(docs_path) #> [1] "documentation_sce_layer.md" "documentation_spe.md" #> [3] "favicon.ico" "footer.html" @@ -828,7 +823,7 @@
Wrapper functions
+-## Import the data as a SpatialExperiment object spe_wrapper <- read10xVisiumWrapper( samples = file.path(tempdir(), "outs"), @@ -837,11 +832,11 @@
Wrapper functions= c("lowres", "hires", "detected", "aligned"), load = TRUE, reference_gtf = gtf_cache ) -#> 2024-07-11 14:14:08.93773 SpatialExperiment::read10xVisium: reading basic data from SpaceRanger -#> 2024-07-11 14:14:16.951628 read10xVisiumAnalysis: reading analysis output from SpaceRanger -#> 2024-07-11 14:14:17.719369 add10xVisiumAnalysis: adding analysis output from SpaceRanger -#> 2024-07-11 14:14:17.926383 rtracklayer::import: reading the reference GTF file -#> 2024-07-11 14:14:38.145959 adding gene information to the SPE object +#> 2024-07-12 13:36:36.600344 SpatialExperiment::read10xVisium: reading basic data from SpaceRanger +#> 2024-07-12 13:36:44.551341 read10xVisiumAnalysis: reading analysis output from SpaceRanger +#> 2024-07-12 13:36:45.90539 add10xVisiumAnalysis: adding analysis output from SpaceRanger +#> 2024-07-12 13:36:46.096749 rtracklayer::import: reading the reference GTF file +#> 2024-07-12 13:37:05.971954 adding gene information to the SPE object #> Warning: Gene IDs did not match. This typically happens when you are not using #> the same GTF file as the one that was used by SpaceRanger. For example, one #> file uses GENCODE IDs and the other one ENSEMBL IDs. read10xVisiumWrapper() @@ -849,8 +844,8 @@
Wrapper functions#> Warning: Dropping 29 out of 36601 genes for which we don't have information on #> the reference GTF file. This typically happens when you are not using the same #> GTF file as the one that was used by SpaceRanger. -#> 2024-07-11 14:14:38.347493 adding information used by spatialLIBD
++#> 2024-07-12 13:37:06.175394 adding information used by spatialLIBD
@@ -66,6 +66,11 @@## Run our shiny app if (interactive()) { vars <- colnames(colData(spe_wrapper)) @@ -892,7 +887,7 @@
scriptPublishing your web applicationapp_dir/deploy.R
Below we illustrate these steps
-diff --git a/news/index.html b/news/index.html index 1143fd9f..eda2a9e9 100644 --- a/news/index.html +++ b/news/index.html @@ -17,7 +17,7 @@+## Directory we created to host the data for the web application ## Use a directory of your preference instead of copy-pasting this code app_dir <- here::here("inst", "spe_wrapper_app") @@ -1016,7 +1011,7 @@
Memory
Regarding the memory limitation, you can estimate how much memory you need per user by considering the memory required for the
-spe
andsce_layer
objects.+#> 2024-07-12 13:34:43.733281 loading file /Users/leocollado/Library/Caches/org.R-project.R/R/BiocFileCache/fc154f26894b_Human_DLPFC_Visium_modeling_results.Rdata%3Fdl%3D1+lobstr::obj_size(spe) / 1024^2 ## Convert to MB #> 283.88 B
In our pilot data (Maynard, Collado-Torres, Weber et al., 2021) our @@ -1124,7 +1119,7 @@
Reproducibility
This package was developed using biocthis.
Code for creating the vignette
-@@ -103,7 +103,7 @@+## Create the vignette library("rmarkdown") system.time(render("TenX_data_download.Rmd", "BiocStyle::html_document")) @@ -1133,9 +1128,9 @@
Reproducibilitylibrary("knitr") knit("TenX_data_download.Rmd", tangle = TRUE)
Date the vignette was generated.
-+#> [1] "2024-07-11 14:14:39 EDT"
#> [1] "2024-07-12 13:37:07 EDT"
Wallclock time spent generating the vignette.
-+#> Time difference of 1.394 mins
#> Time difference of 1.195 mins
R
session information.#> ─ Session info ─────────────────────────────────────────────────────────────────────────────────────────────────────── #> setting value @@ -1147,7 +1142,7 @@
Reproducibility#> collate en_US.UTF-8 #> ctype en_US.UTF-8 #> tz America/New_York -#> date 2024-07-11 +#> date 2024-07-12 #> pandoc 3.2 @ /opt/homebrew/bin/ (via rmarkdown) #> #> ─ Packages ─────────────────────────────────────────────────────────────────────────────────────────────────────────── @@ -1301,7 +1296,7 @@
Reproducibility#> SparseArray 1.4.8 2024-05-30 [1] Bioconductor 3.19 (R 4.4.0) #> sparseMatrixStats 1.16.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) #> SpatialExperiment * 1.14.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) -#> spatialLIBD * 1.17.5 2024-07-11 [1] Bioconductor +#> spatialLIBD * 1.17.6 2024-07-12 [1] Github (LieberInstitute/spatialLIBD@4c7274f) #> statmod 1.5.0 2023-01-06 [1] CRAN (R 4.4.0) #> stringi 1.8.4 2024-05-06 [1] CRAN (R 4.4.0) #> stringr 1.5.1 2023-11-14 [1] CRAN (R 4.4.0) diff --git a/articles/guide_to_spatial_registration.html b/articles/guide_to_spatial_registration.html index 12a6149c..9193816b 100644 --- a/articles/guide_to_spatial_registration.html +++ b/articles/guide_to_spatial_registration.html @@ -41,7 +41,7 @@
Louise Development
lahuuki@gmail.com -11 July 2024
+12 July 2024
Source:vignettes/guide_to_spatial_registration.Rmd
@@ -286,7 +286,7 @@guide_to_spatial_registration.Rmd
Spatial Reference
## get reference layer enrichment statistics layer_modeling_results <- fetch_data(type = "modeling_results") -#> 2024-07-11 14:11:55.22609 loading file /Users/leocollado/Library/Caches/org.R-project.R/R/BiocFileCache/fc154f26894b_Human_DLPFC_Visium_modeling_results.Rdata%3Fdl%3D1
-layer_modeling_results$enrichment[1:5, 1:5] @@ -318,15 +318,13 @@
Query Data: snRNA-seq "SCE_DLPFC-n3_tran-etal.rda" ) local_data <- BiocFileCache::bfcrpath(url, x = bfc) -#> adding rname 'https://libd-snrnaseq-pilot.s3.us-east-2.amazonaws.com/SCE_DLPFC-n3_tran-etal.rda'
-+ load(local_data, verbose = TRUE) #> Loading objects: #> sce.dlpfc.tran
DLPFC tissue consists of many cell types, some are quite rare and will not have enough data to complete the analysis
-diff --git a/index.html b/index.html index 4c26eb5e..7d2948b3 100644 --- a/index.html +++ b/index.html @@ -41,7 +41,7 @@+table(sce.dlpfc.tran$cellType) #> #> Astro Excit_A Excit_B Excit_C Excit_D Excit_E Excit_F @@ -338,7 +336,7 @@
Query Data: snRNA-seqThe data will be pseudo-bulked over
donor
xcellType
, it is recommended to drop groups with < 10 nuclei (this is done automatically in the pseudobulk step). -+table(sce.dlpfc.tran$donor, sce.dlpfc.tran$cellType) #> #> Astro Excit_A Excit_B Excit_C Excit_D Excit_E Excit_F Inhib_A Inhib_B @@ -382,7 +380,7 @@
Get Enrichment statistics
The function
-registration_wrapper()
makes life easy by wrapping these functions together in to one step!++#> 2024-07-12 13:34:47.54218 make pseudobulk object +#> 2024-07-12 13:34:48.938342 dropping 13 pseudo-bulked samples that are below 'min_ncells'. +#> 2024-07-12 13:34:48.969954 drop lowly expressed genes +#> 2024-07-12 13:34:49.048746 normalize expression +#> 2024-07-12 13:34:49.858343 create model matrix +#> 2024-07-12 13:34:49.869764 run duplicateCorrelation() +#> 2024-07-12 13:34:55.765455 The estimated correlation is: 0.138734774807097 +#> 2024-07-12 13:34:55.766871 computing enrichment statistics +#> 2024-07-12 13:34:56.529525 extract and reformat enrichment results +#> 2024-07-12 13:34:56.57218 running the baseline pairwise model +#> 2024-07-12 13:34:56.701989 computing pairwise statistics +#> 2024-07-12 13:34:58.008592 computing F-statistics## Perform the spatial registration sce_modeling_results <- registration_wrapper( sce = sce.dlpfc.tran, @@ -391,23 +389,23 @@
Get Enrichment statistics gene_ensembl = "gene_id", gene_name = "gene_name" ) -#> 2024-07-11 14:12:08.12401 make pseudobulk object -#> 2024-07-11 14:12:09.491195 dropping 13 pseudo-bulked samples that are below 'min_ncells'. -#> 2024-07-11 14:12:09.521013 drop lowly expressed genes -#> 2024-07-11 14:12:09.597386 normalize expression -#> 2024-07-11 14:12:10.391193 create model matrix -#> 2024-07-11 14:12:10.402396 run duplicateCorrelation() -#> 2024-07-11 14:12:16.025491 The estimated correlation is: 0.138734774807097 -#> 2024-07-11 14:12:16.028807 computing enrichment statistics -#> 2024-07-11 14:12:16.770551 extract and reformat enrichment results -#> 2024-07-11 14:12:16.813127 running the baseline pairwise model -#> 2024-07-11 14:12:16.936852 computing pairwise statistics -#> 2024-07-11 14:12:18.212249 computing F-statistics
Extract Enrichment t-statistics
-+-## extract t-statics and rename registration_t_stats <- sce_modeling_results$enrichment[, grep("^t_stat", colnames(sce_modeling_results$enrichment))] colnames(registration_t_stats) <- gsub("^t_stat_", "", colnames(registration_t_stats)) @@ -415,7 +413,7 @@
Extract Enrichment t-statistics## cell types x gene dim(registration_t_stats) #> [1] 18620 15
@@ -116,7 +116,7 @@+## check out table registration_t_stats[1:5, 1:5] @@ -429,7 +427,7 @@
Extract Enrichment t-statistics
Correlate statsics with Layer Reference
-+@@ -498,7 +496,7 @@cor_layer <- layer_stat_cor( stats = registration_t_stats, modeling_results = layer_modeling_results, @@ -488,7 +486,7 @@
Create Heatmap of Correlations
+layer_stat_cor_plot(cor_layer, max = max(cor_layer))
Annotate Cell Types by Top Corre
We can use
-annotate_registered_clusters
to create annotation labels for the cell types based on the correlation values.+#> 2024-07-12 13:35:14.92506 loading file /Users/leocollado/Library/Caches/org.R-project.R/R/BiocFileCache/fc154f26894b_Human_DLPFC_Visium_modeling_results.Rdata%3Fdl%3D1+@@ -110,7 +110,7 @@anno <- annotate_registered_clusters( cor_stats_layer = cor_layer, confidence_threshold = 0.25, @@ -554,7 +552,7 @@
Reproducibility
This package was developed using biocthis.
Code for creating the vignette
-diff --git a/articles/multi_gene_plots.html b/articles/multi_gene_plots.html index 8db84df9..70cbacb7 100644 --- a/articles/multi_gene_plots.html +++ b/articles/multi_gene_plots.html @@ -41,7 +41,7 @@+## Create the vignette library("rmarkdown") system.time(render("guide_to_spatial_registration.Rmd", "BiocStyle::html_document")) @@ -563,9 +561,9 @@
Reproducibilitylibrary("knitr") knit("guide_to_spatial_registration.Rmd", tangle = TRUE)
Date the vignette was generated.
-+#> [1] "2024-07-11 14:12:19 EDT"
#> [1] "2024-07-12 13:34:58 EDT"
Wallclock time spent generating the vignette.
-+#> Time difference of 36.265 secs
#> Time difference of 23.369 secs
R
session information.#> ─ Session info ─────────────────────────────────────────────────────────────────────────────────────────────────────── #> setting value @@ -577,7 +575,7 @@
Reproducibility#> collate en_US.UTF-8 #> ctype en_US.UTF-8 #> tz America/New_York -#> date 2024-07-11 +#> date 2024-07-12 #> pandoc 3.2 @ /opt/homebrew/bin/ (via rmarkdown) #> #> ─ Packages ─────────────────────────────────────────────────────────────────────────────────────────────────────────── @@ -718,7 +716,7 @@
Reproducibility#> SparseArray 1.4.8 2024-05-30 [1] Bioconductor 3.19 (R 4.4.0) #> sparseMatrixStats 1.16.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) #> SpatialExperiment * 1.14.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) -#> spatialLIBD * 1.17.5 2024-07-11 [1] Bioconductor +#> spatialLIBD * 1.17.6 2024-07-12 [1] Github (LieberInstitute/spatialLIBD@4c7274f) #> statmod 1.5.0 2023-01-06 [1] CRAN (R 4.4.0) #> stringi 1.8.4 2024-05-06 [1] CRAN (R 4.4.0) #> stringr 1.5.1 2023-11-14 [1] CRAN (R 4.4.0) diff --git a/articles/index.html b/articles/index.html index 8bf4cf76..2813496b 100644 --- a/articles/index.html +++ b/articles/index.html @@ -17,7 +17,7 @@
Leonardo Public Health
lcolladotor@gmail.com -11 July 2024
+12 July 2024
Source:vignettes/multi_gene_plots.Rmd
@@ -197,10 +197,10 @@multi_gene_plots.Rmd
Plotting One Gene
modeling_results <- fetch_data(type = "modeling_results") -#> 2024-07-11 14:12:35.290315 loading file /Users/leocollado/Library/Caches/org.R-project.R/R/BiocFileCache/fc154f26894b_Human_DLPFC_Visium_modeling_results.Rdata%3Fdl%3D1
+#> 2024-07-12 13:35:15.627848 loading file /Users/leocollado/Library/Caches/org.R-project.R/R/BiocFileCache/fc1571d8e1fb_Human_DLPFC_Visium_processedData_sce_scran_sce_layer_spatialLIBD.Rdata%3Fdl%3D1sce_layer <- fetch_data(type = "sce_layer") -#> 2024-07-11 14:12:35.916167 loading file /Users/leocollado/Library/Caches/org.R-project.R/R/BiocFileCache/fc1571d8e1fb_Human_DLPFC_Visium_processedData_sce_scran_sce_layer_spatialLIBD.Rdata%3Fdl%3D1
sig_genes <- sig_genes_extract_all( n = 400, @@ -426,9 +426,9 @@
Reproducibilitylibrary("knitr") knit("multi_gene_plots.Rmd", tangle = TRUE)
Date the vignette was generated.
-+#> [1] "2024-07-11 14:12:45 EDT"
#> [1] "2024-07-12 13:35:25 EDT"
Wallclock time spent generating the vignette.
-+#> Time difference of 22.513 secs
#> Time difference of 22.684 secs
R
session information.#> ─ Session info ─────────────────────────────────────────────────────────────────────────────────────────────────────── #> setting value @@ -440,7 +440,7 @@
Reproducibility#> collate en_US.UTF-8 #> ctype en_US.UTF-8 #> tz America/New_York -#> date 2024-07-11 +#> date 2024-07-12 #> pandoc 3.2 @ /opt/homebrew/bin/ (via rmarkdown) #> #> ─ Packages ─────────────────────────────────────────────────────────────────────────────────────────────────────────── @@ -583,7 +583,7 @@
Reproducibility#> SparseArray 1.4.8 2024-05-30 [1] Bioconductor 3.19 (R 4.4.0) #> sparseMatrixStats 1.16.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) #> SpatialExperiment * 1.14.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) -#> spatialLIBD * 1.17.5 2024-07-11 [1] Bioconductor +#> spatialLIBD * 1.17.6 2024-07-12 [1] Github (LieberInstitute/spatialLIBD@4c7274f) #> statmod 1.5.0 2023-01-06 [1] CRAN (R 4.4.0) #> stringi 1.8.4 2024-05-06 [1] CRAN (R 4.4.0) #> stringr 1.5.1 2023-11-14 [1] CRAN (R 4.4.0) diff --git a/articles/spatialLIBD.html b/articles/spatialLIBD.html index 7314afe7..bbe703a1 100644 --- a/articles/spatialLIBD.html +++ b/articles/spatialLIBD.html @@ -41,7 +41,7 @@
Andrew E. Campus
andrew.jaffe@libd.org -11 July 2024
+12 July 2024
Source:vignettes/spatialLIBD.Rmd
@@ -416,7 +416,7 @@spatialLIBD.Rmd
Downloading the data with
s
+#> 2024-07-12 13:35:36.748436 loading file /Users/leocollado/Library/Caches/org.R-project.R/R/BiocFileCache/fc1543ff842_sce_sub_for_vignette.Rdata%3Fdl%3D1## Download the small example sce data sce <- fetch_data(type = "sce_example", eh = ehub) -#> 2024-07-11 14:12:56.026769 loading file /Users/leocollado/Library/Caches/org.R-project.R/R/BiocFileCache/fc1543ff842_sce_sub_for_vignette.Rdata%3Fdl%3D1
+#> 2024-07-12 13:35:40.923268 loading file /Users/leocollado/Library/Caches/org.R-project.R/R/BiocFileCache/fc1571d8e1fb_Human_DLPFC_Visium_processedData_sce_scran_sce_layer_spatialLIBD.Rdata%3Fdl%3D1## Convert to a SpatialExperiment object @@ -429,10 +429,10 @@
Downloading the data with
s ## Query ExperimentHub and download the data if (!exists("sce_layer")) sce_layer <- fetch_data(type = "sce_layer", eh = ehub) -#> 2024-07-11 14:13:00.491456 loading file /Users/leocollado/Library/Caches/org.R-project.R/R/BiocFileCache/fc1571d8e1fb_Human_DLPFC_Visium_processedData_sce_scran_sce_layer_spatialLIBD.Rdata%3Fdl%3D1
+#> 2024-07-12 13:35:41.62943 loading file /Users/leocollado/Library/Caches/org.R-project.R/R/BiocFileCache/fc154f26894b_Human_DLPFC_Visium_modeling_results.Rdata%3Fdl%3D1modeling_results <- fetch_data("modeling_results", eh = ehub) -#> 2024-07-11 14:13:01.165085 loading file /Users/leocollado/Library/Caches/org.R-project.R/R/BiocFileCache/fc154f26894b_Human_DLPFC_Visium_modeling_results.Rdata%3Fdl%3D1
Once you have downloaded the objects, we can explore them a little bit
+#> 5.070 0.193 5.315@@ -509,7 +509,7 @@Downloading the data with
s ) ) #> user system elapsed -#> 5.011 0.199 5.239
## Explore the result @@ -1393,9 +1393,9 @@
Reproducibilitylibrary("knitr") knit("spatialLIBD.Rmd", tangle = TRUE)
Date the vignette was generated.
-+#> [1] "2024-07-11 14:13:11 EDT"
#> [1] "2024-07-12 13:35:51 EDT"
Wallclock time spent generating the vignette.
-+#> Time difference of 22.503 secs
#> Time difference of 22.781 secs
R
session information.#> ─ Session info ─────────────────────────────────────────────────────────────────────────────────────────────────────── #> setting value @@ -1407,7 +1407,7 @@
Reproducibility#> collate en_US.UTF-8 #> ctype en_US.UTF-8 #> tz America/New_York -#> date 2024-07-11 +#> date 2024-07-12 #> pandoc 3.2 @ /opt/homebrew/bin/ (via rmarkdown) #> #> ─ Packages ─────────────────────────────────────────────────────────────────────────────────────────────────────────── @@ -1550,7 +1550,7 @@
Reproducibility#> SparseArray 1.4.8 2024-05-30 [1] Bioconductor 3.19 (R 4.4.0) #> sparseMatrixStats 1.16.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) #> SpatialExperiment * 1.14.0 2024-04-30 [1] Bioconductor 3.19 (R 4.4.0) -#> spatialLIBD * 1.17.5 2024-07-11 [1] Bioconductor +#> spatialLIBD * 1.17.6 2024-07-12 [1] Github (LieberInstitute/spatialLIBD@4c7274f) #> statmod 1.5.0 2023-01-06 [1] CRAN (R 4.4.0) #> stringi 1.8.4 2024-05-06 [1] CRAN (R 4.4.0) #> stringr 1.5.1 2023-11-14 [1] CRAN (R 4.4.0) diff --git a/authors.html b/authors.html index e9e484d4..58a2669a 100644 --- a/authors.html +++ b/authors.html @@ -17,7 +17,7 @@
Changelog
Source:NEWS.md
+spatialLIBD 1.17.6
+BUG FIXES
+
- Fixed the bug reported by @lahuuki about
+vis_grid_clus()
not handlinglogical()
cluster variables. See https://github.com/LieberInstitute/spatialLIBD/issues/80. To resolve this,sort_clusters()
andget_colors()
had to change internally. Examples and documentation for both functions have now been updated to showcase what happens when you provide alogical()
vector as an input.diff --git a/reference/add_images.html b/reference/add_images.html index d2af9e5a..587871df 100644 --- a/reference/add_images.html +++ b/reference/add_images.html @@ -25,7 +25,7 @@spatialLIBD 1.17.5
NEW FEATURES
diff --git a/pkgdown.yml b/pkgdown.yml index 563211a3..0ea50a53 100644 --- a/pkgdown.yml +++ b/pkgdown.yml @@ -6,5 +6,5 @@ articles: multi_gene_plots: multi_gene_plots.html spatialLIBD: spatialLIBD.html TenX_data_download: TenX_data_download.html -last_built: 2024-07-11T18:07Z +last_built: 2024-07-12T17:30Z diff --git a/reference/add10xVisiumAnalysis.html b/reference/add10xVisiumAnalysis.html index 643c6a93..82b7a5c4 100644 --- a/reference/add10xVisiumAnalysis.html +++ b/reference/add10xVisiumAnalysis.html @@ -19,7 +19,7 @@Examples
)) } #> snapshotDate(): 2024-04-29 -#> 2024-07-11 14:07:19.511006 loading file /Users/leocollado/Library/Caches/org.R-project.R/R/BiocFileCache/6f56656adcb_Human_DLPFC_Visium_processedData_sce_scran_spatialLIBD.Rdata%3Fdl%3D1 -#> 2024-07-11 14:07:30.626306 adding image for sample 151507 -#> 2024-07-11 14:07:31.685639 adding image for sample 151508 +#> 2024-07-12 13:30:33.680249 loading file /Users/leocollado/Library/Caches/org.R-project.R/R/BiocFileCache/6f56656adcb_Human_DLPFC_Visium_processedData_sce_scran_spatialLIBD.Rdata%3Fdl%3D1 +#> 2024-07-12 13:30:45.024057 adding image for sample 151507 +#> 2024-07-12 13:30:46.208452 adding image for sample 151508 #> Warning: No image was found for sample: 151508 -#> 2024-07-11 14:07:31.685839 adding image for sample 151509 +#> 2024-07-12 13:30:46.208635 adding image for sample 151509 #> Warning: No image was found for sample: 151509 -#> 2024-07-11 14:07:31.68596 adding image for sample 151510 +#> 2024-07-12 13:30:46.208752 adding image for sample 151510 #> Warning: No image was found for sample: 151510 -#> 2024-07-11 14:07:31.686076 adding image for sample 151669 +#> 2024-07-12 13:30:46.208857 adding image for sample 151669 #> Warning: No image was found for sample: 151669 -#> 2024-07-11 14:07:31.686183 adding image for sample 151670 +#> 2024-07-12 13:30:46.208958 adding image for sample 151670 #> Warning: No image was found for sample: 151670 -#> 2024-07-11 14:07:31.686288 adding image for sample 151671 +#> 2024-07-12 13:30:46.209059 adding image for sample 151671 #> Warning: No image was found for sample: 151671 -#> 2024-07-11 14:07:31.686389 adding image for sample 151672 +#> 2024-07-12 13:30:46.209155 adding image for sample 151672 #> Warning: No image was found for sample: 151672 -#> 2024-07-11 14:07:31.686489 adding image for sample 151673 +#> 2024-07-12 13:30:46.209248 adding image for sample 151673 #> Warning: No image was found for sample: 151673 -#> 2024-07-11 14:07:31.686589 adding image for sample 151674 +#> 2024-07-12 13:30:46.20934 adding image for sample 151674 #> Warning: No image was found for sample: 151674 -#> 2024-07-11 14:07:31.686685 adding image for sample 151675 +#> 2024-07-12 13:30:46.209443 adding image for sample 151675 #> Warning: No image was found for sample: 151675 -#> 2024-07-11 14:07:31.686775 adding image for sample 151676 +#> 2024-07-12 13:30:46.209534 adding image for sample 151676 #> Warning: No image was found for sample: 151676 #> DataFrame with 13 rows and 4 columns -#> adding rname 'https://spatial-dlpfc.s3.us-east-2.amazonaws.com/images/151507_tissue_lowres_image.png' -#> -#> adding rname 'https://spatial-dlpfc.s3.us-east-2.amazonaws.com/images/151508_tissue_lowres_image.png' -#> -#> adding rname 'https://spatial-dlpfc.s3.us-east-2.amazonaws.com/images/151509_tissue_lowres_image.png' -#> -#> adding rname 'https://spatial-dlpfc.s3.us-east-2.amazonaws.com/images/151510_tissue_lowres_image.png' -#> -#> adding rname 'https://spatial-dlpfc.s3.us-east-2.amazonaws.com/images/151669_tissue_lowres_image.png' -#> -#> adding rname 'https://spatial-dlpfc.s3.us-east-2.amazonaws.com/images/151674_tissue_lowres_image.png' -#> -#> adding rname 'https://spatial-dlpfc.s3.us-east-2.amazonaws.com/images/151675_tissue_lowres_image.png' -#> -#> adding rname 'https://spatial-dlpfc.s3.us-east-2.amazonaws.com/images/151676_tissue_lowres_image.png' -#> #> sample_id image_id data scaleFactor #> <character> <character> <list> <numeric> #> 1 151507 lowres #### 0.0450045 diff --git a/reference/add_key.html b/reference/add_key.html index 8b33838d..6aaa15fb 100644 --- a/reference/add_key.html +++ b/reference/add_key.html @@ -19,7 +19,7 @@Examples
## have since changed it to 'barcode'_'sample_id'. } #> snapshotDate(): 2024-04-29 -#> 2024-07-11 14:07:35.347741 loading file /Users/leocollado/Library/Caches/org.R-project.R/R/BiocFileCache/6f56656adcb_Human_DLPFC_Visium_processedData_sce_scran_spatialLIBD.Rdata%3Fdl%3D1 +#> 2024-07-12 13:30:47.956934 loading file /Users/leocollado/Library/Caches/org.R-project.R/R/BiocFileCache/6f56656adcb_Human_DLPFC_Visium_processedData_sce_scran_spatialLIBD.Rdata%3Fdl%3D1 #> [1] "AAACAACGAATAGTTC-1_151507" "AAACAAGTATCTCCCA-1_151507" #> [3] "AAACAATCTACTAGCA-1_151507" "AAACACCAATAACTGC-1_151507" #> [5] "AAACAGCTTTCAGAAG-1_151507" "AAACAGGGTCTATATT-1_151507" diff --git a/reference/add_qc_metrics.html b/reference/add_qc_metrics.html index 987f328d..911c362a 100644 --- a/reference/add_qc_metrics.html +++ b/reference/add_qc_metrics.html @@ -21,7 +21,7 @@Examples
@@ -140,9 +140,7 @@## Obtain the necessary data spe_pre_qc <- fetch_data("spatialDLPFC_Visium_example_subset") #> snapshotDate(): 2024-04-29 -#> 2024-07-11 14:07:45.879194 loading file /Users/leocollado/Library/Caches/org.R-project.R/R/BiocFileCache/6f563a40ecf7_spatialDLPFC_spe_subset_example.rds%3Fdl%3D1 +#> 2024-07-12 13:30:58.248283 loading file /Users/leocollado/Library/Caches/org.R-project.R/R/BiocFileCache/6f563a40ecf7_spatialDLPFC_spe_subset_example.rds%3Fdl%3D1 ## For now, we fake out tissue spots in example data spe_qc <- spe_pre_qc diff --git a/reference/annotate_registered_clusters.html b/reference/annotate_registered_clusters.html index 4f8da810..83a091dc 100644 --- a/reference/annotate_registered_clusters.html +++ b/reference/annotate_registered_clusters.html @@ -21,7 +21,7 @@
Examples
modeling_results <- fetch_data(type = "modeling_results") } #> snapshotDate(): 2024-04-29 -#> adding rname 'https://www.dropbox.com/s/se6rrgb9yhm5gfh/Human_DLPFC_Visium_modeling_results.Rdata?dl=1' -#> -#> 2024-07-11 14:08:00.340209 loading file /Users/leocollado/Library/Caches/org.R-project.R/R/BiocFileCache/fc154f26894b_Human_DLPFC_Visium_modeling_results.Rdata%3Fdl%3D1 +#> 2024-07-12 13:31:06.057516 loading file /Users/leocollado/Library/Caches/org.R-project.R/R/BiocFileCache/fc154f26894b_Human_DLPFC_Visium_modeling_results.Rdata%3Fdl%3D1 ## Compute the correlations cor_stats_layer <- layer_stat_cor( diff --git a/reference/check_modeling_results.html b/reference/check_modeling_results.html index 8b261fa2..cb74c7f7 100644 --- a/reference/check_modeling_results.html +++ b/reference/check_modeling_results.html @@ -18,7 +18,7 @@Examples
modeling_results <- fetch_data(type = "modeling_results") } #> snapshotDate(): 2024-04-29 -#> 2024-07-11 14:08:01.242944 loading file /Users/leocollado/Library/Caches/org.R-project.R/R/BiocFileCache/fc154f26894b_Human_DLPFC_Visium_modeling_results.Rdata%3Fdl%3D1 +#> 2024-07-12 13:31:06.904478 loading file /Users/leocollado/Library/Caches/org.R-project.R/R/BiocFileCache/fc154f26894b_Human_DLPFC_Visium_modeling_results.Rdata%3Fdl%3D1 ## Check the object xx <- check_modeling_results(modeling_results) diff --git a/reference/check_sce.html b/reference/check_sce.html index d8d8e3fa..d392ebf4 100644 --- a/reference/check_sce.html +++ b/reference/check_sce.html @@ -20,7 +20,7 @@Examples
check_sce(sce_example) } #> snapshotDate(): 2024-04-29 -#> adding rname 'https://www.dropbox.com/s/5ra9o8ku9iyyf70/sce_sub_for_vignette.Rdata?dl=1' -#> -#> 2024-07-11 14:08:05.972913 loading file /Users/leocollado/Library/Caches/org.R-project.R/R/BiocFileCache/fc1543ff842_sce_sub_for_vignette.Rdata%3Fdl%3D1 +#> 2024-07-12 13:31:07.829229 loading file /Users/leocollado/Library/Caches/org.R-project.R/R/BiocFileCache/fc1543ff842_sce_sub_for_vignette.Rdata%3Fdl%3D1 #> class: SingleCellExperiment #> dim: 33538 47681 #> metadata(1): image diff --git a/reference/check_sce_layer.html b/reference/check_sce_layer.html index ab194156..cacbe139 100644 --- a/reference/check_sce_layer.html +++ b/reference/check_sce_layer.html @@ -18,7 +18,7 @@Examples
## Obtain the necessary data if (!exists("sce_layer")) sce_layer <- fetch_data("sce_layer") #> snapshotDate(): 2024-04-29 -#> adding rname 'https://www.dropbox.com/s/bg8xwysh2vnjwvg/Human_DLPFC_Visium_processedData_sce_scran_sce_layer_spatialLIBD.Rdata?dl=1' -#> -#> 2024-07-11 14:08:10.505096 loading file /Users/leocollado/Library/Caches/org.R-project.R/R/BiocFileCache/fc1571d8e1fb_Human_DLPFC_Visium_processedData_sce_scran_sce_layer_spatialLIBD.Rdata%3Fdl%3D1 +#> 2024-07-12 13:31:09.606127 loading file /Users/leocollado/Library/Caches/org.R-project.R/R/BiocFileCache/fc1571d8e1fb_Human_DLPFC_Visium_processedData_sce_scran_sce_layer_spatialLIBD.Rdata%3Fdl%3D1 ## Check the object check_sce_layer(sce_layer) diff --git a/reference/check_spe.html b/reference/check_spe.html index 08ad58cb..c6605840 100644 --- a/reference/check_spe.html +++ b/reference/check_spe.html @@ -18,7 +18,7 @@Examples
check_spe(spe) } #> snapshotDate(): 2024-04-29 -#> 2024-07-11 14:08:11.430643 loading file /Users/leocollado/Library/Caches/org.R-project.R/R/BiocFileCache/6f56656adcb_Human_DLPFC_Visium_processedData_sce_scran_spatialLIBD.Rdata%3Fdl%3D1 +#> 2024-07-12 13:31:10.532813 loading file /Users/leocollado/Library/Caches/org.R-project.R/R/BiocFileCache/6f56656adcb_Human_DLPFC_Visium_processedData_sce_scran_spatialLIBD.Rdata%3Fdl%3D1 #> class: SpatialExperiment #> dim: 33538 47681 #> metadata(0): #> assays(2): counts logcounts -#> rownames(33538): ENSG00000243485 ENSG00000237613 ... ENSG00000277475 ENSG00000268674 +#> rownames(33538): ENSG00000243485 ENSG00000237613 ... ENSG00000277475 +#> ENSG00000268674 #> rowData names(9): source type ... gene_search is_top_hvg -#> colnames(47681): AAACAACGAATAGTTC-1 AAACAAGTATCTCCCA-1 ... TTGTTTCCATACAACT-1 -#> TTGTTTGTGTAAATTC-1 +#> colnames(47681): AAACAACGAATAGTTC-1 AAACAAGTATCTCCCA-1 ... +#> TTGTTTCCATACAACT-1 TTGTTTGTGTAAATTC-1 #> colData names(69): sample_id Cluster ... array_row array_col -#> reducedDimNames(6): PCA TSNE_perplexity50 ... TSNE_perplexity80 UMAP_neighbors15 +#> reducedDimNames(6): PCA TSNE_perplexity50 ... TSNE_perplexity80 +#> UMAP_neighbors15 #> mainExpName: NULL #> altExpNames(0): #> spatialCoords names(2) : pxl_col_in_fullres pxl_row_in_fullres diff --git a/reference/cluster_export.html b/reference/cluster_export.html index ab2d08ae..edfff53d 100644 --- a/reference/cluster_export.html +++ b/reference/cluster_export.html @@ -21,7 +21,7 @@Examples
cluster_export(spe, "GraphBased") } #> snapshotDate(): 2024-04-29 -#> 2024-07-11 14:08:21.933419 loading file /Users/leocollado/Library/Caches/org.R-project.R/R/BiocFileCache/6f56656adcb_Human_DLPFC_Visium_processedData_sce_scran_spatialLIBD.Rdata%3Fdl%3D1 +#> 2024-07-12 13:31:21.093282 loading file /Users/leocollado/Library/Caches/org.R-project.R/R/BiocFileCache/6f56656adcb_Human_DLPFC_Visium_processedData_sce_scran_spatialLIBD.Rdata%3Fdl%3D1 #> Overwriting 'spe$key'. Set 'overwrite = FALSE' if you do not want to overwrite it. #> Overwriting 'spe$key'. Set 'overwrite = FALSE' if you do not want to overwrite it.Examples
colData(cluster_import(spe)) } #> snapshotDate(): 2024-04-29 -#> 2024-07-11 14:08:32.632255 loading file /Users/leocollado/Library/Caches/org.R-project.R/R/BiocFileCache/6f56656adcb_Human_DLPFC_Visium_processedData_sce_scran_spatialLIBD.Rdata%3Fdl%3D1 +#> 2024-07-12 13:31:32.144977 loading file /Users/leocollado/Library/Caches/org.R-project.R/R/BiocFileCache/6f56656adcb_Human_DLPFC_Visium_processedData_sce_scran_spatialLIBD.Rdata%3Fdl%3D1 #> Overwriting 'spe$key'. Set 'overwrite = FALSE' if you do not want to overwrite it. -#> Warning: '/var/folders/_2/hqcmhc1d1bl3lqxgcrkpv8_00000gn/T//RtmpCGZyme/exported_clusters/spatialLIBD' already exists +#> Warning: '/var/folders/_2/hqcmhc1d1bl3lqxgcrkpv8_00000gn/T//RtmpaEDqcP/exported_clusters/spatialLIBD' already exists #> Overwriting 'spe$key'. Set 'overwrite = FALSE' if you do not want to overwrite it. -#> Warning: '/var/folders/_2/hqcmhc1d1bl3lqxgcrkpv8_00000gn/T//RtmpCGZyme/exported_clusters/GraphBased' already exists +#> Warning: '/var/folders/_2/hqcmhc1d1bl3lqxgcrkpv8_00000gn/T//RtmpaEDqcP/exported_clusters/GraphBased' already exists #> Overwriting 'spe$key'. Set 'overwrite = FALSE' if you do not want to overwrite it. #> DataFrame with 47681 rows and 71 columns -#> key sample_id Cluster sum_umi sum_gene subject -#> <character> <character> <integer> <numeric> <integer> <character> -#> AAACAACGAATAGTTC-1 AAACAACGAATAGTTC-1_1.. 151507 6 948 727 Br5292 -#> AAACAAGTATCTCCCA-1 AAACAAGTATCTCCCA-1_1.. 151507 3 4261 2170 Br5292 -#> AAACAATCTACTAGCA-1 AAACAATCTACTAGCA-1_1.. 151507 2 1969 1093 Br5292 -#> AAACACCAATAACTGC-1 AAACACCAATAACTGC-1_1.. 151507 5 3368 1896 Br5292 -#> AAACAGCTTTCAGAAG-1 AAACAGCTTTCAGAAG-1_1.. 151507 1 2981 1620 Br5292 -#> ... ... ... ... ... ... ... -#> TTGTTGTGTGTCAAGA-1 TTGTTGTGTGTCAAGA-1_1.. 151676 5 2880 1638 Br8100 -#> TTGTTTCACATCCAGG-1 TTGTTTCACATCCAGG-1_1.. 151676 2 2640 1526 Br8100 -#> TTGTTTCATTAGTCTA-1 TTGTTTCATTAGTCTA-1_1.. 151676 2 2063 1279 Br8100 -#> TTGTTTCCATACAACT-1 TTGTTTCCATACAACT-1_1.. 151676 7 1031 748 Br8100 -#> TTGTTTGTGTAAATTC-1 TTGTTTGTGTAAATTC-1_1.. 151676 1 2625 1392 Br8100 -#> position replicate subject_position discard cell_count SNN_k50_k4 -#> <character> <character> <character> <logical> <integer> <integer> -#> AAACAACGAATAGTTC-1 0 1 Br5292_pos0 FALSE 0 1 -#> AAACAAGTATCTCCCA-1 0 1 Br5292_pos0 FALSE 3 1 -#> AAACAATCTACTAGCA-1 0 1 Br5292_pos0 FALSE 2 3 -#> AAACACCAATAACTGC-1 0 1 Br5292_pos0 FALSE 5 2 -#> AAACAGCTTTCAGAAG-1 0 1 Br5292_pos0 FALSE 3 1 -#> ... ... ... ... ... ... ... -#> TTGTTGTGTGTCAAGA-1 300 2 Br8100_pos300 FALSE 1 1 -#> TTGTTTCACATCCAGG-1 300 2 Br8100_pos300 FALSE 6 2 -#> TTGTTTCATTAGTCTA-1 300 2 Br8100_pos300 FALSE 9 2 -#> TTGTTTCCATACAACT-1 300 2 Br8100_pos300 FALSE 2 1 -#> TTGTTTGTGTAAATTC-1 300 2 Br8100_pos300 FALSE 0 1 -#> SNN_k50_k5 SNN_k50_k6 SNN_k50_k7 SNN_k50_k8 SNN_k50_k9 SNN_k50_k10 SNN_k50_k11 -#> <integer> <integer> <integer> <integer> <integer> <integer> <integer> -#> AAACAACGAATAGTTC-1 1 1 3 3 4 4 5 -#> AAACAAGTATCTCCCA-1 1 1 1 1 1 1 4 -#> AAACAATCTACTAGCA-1 2 3 4 4 5 5 6 -#> AAACACCAATAACTGC-1 3 4 5 8 9 10 11 -#> AAACAGCTTTCAGAAG-1 1 1 1 1 3 3 3 -#> ... ... ... ... ... ... ... ... -#> TTGTTGTGTGTCAAGA-1 1 1 1 1 1 1 4 -#> TTGTTTCACATCCAGG-1 3 4 5 6 7 8 9 -#> TTGTTTCATTAGTCTA-1 3 4 5 6 7 8 9 -#> TTGTTTCCATACAACT-1 1 1 1 1 3 3 3 -#> TTGTTTGTGTAAATTC-1 1 2 2 2 2 2 1 -#> SNN_k50_k12 SNN_k50_k13 SNN_k50_k14 SNN_k50_k15 SNN_k50_k16 SNN_k50_k17 -#> <integer> <integer> <integer> <integer> <integer> <integer> -#> AAACAACGAATAGTTC-1 5 5 6 7 7 9 -#> AAACAAGTATCTCCCA-1 4 4 4 3 3 3 -#> AAACAATCTACTAGCA-1 6 6 7 8 8 7 -#> AAACACCAATAACTGC-1 10 9 10 11 11 12 -#> AAACAGCTTTCAGAAG-1 3 3 3 2 2 2 -#> ... ... ... ... ... ... ... -#> TTGTTGTGTGTCAAGA-1 4 4 4 3 3 3 -#> TTGTTTCACATCCAGG-1 8 8 9 10 10 11 -#> TTGTTTCATTAGTCTA-1 8 8 9 10 10 11 -#> TTGTTTCCATACAACT-1 3 3 3 2 2 2 -#> TTGTTTGTGTAAATTC-1 1 1 1 5 5 5 -#> SNN_k50_k18 SNN_k50_k19 SNN_k50_k20 SNN_k50_k21 SNN_k50_k22 SNN_k50_k23 -#> <integer> <integer> <integer> <integer> <integer> <integer> -#> AAACAACGAATAGTTC-1 10 10 10 10 11 11 -#> AAACAAGTATCTCCCA-1 2 2 2 2 1 1 -#> AAACAATCTACTAGCA-1 8 8 8 8 9 9 -#> AAACACCAATAACTGC-1 13 12 11 11 12 20 -#> AAACAGCTTTCAGAAG-1 1 1 1 1 6 6 -#> ... ... ... ... ... ... ... -#> TTGTTGTGTGTCAAGA-1 2 2 2 2 1 1 -#> TTGTTTCACATCCAGG-1 12 18 18 17 18 17 -#> TTGTTTCATTAGTCTA-1 12 15 15 14 15 14 -#> TTGTTTCCATACAACT-1 1 1 1 1 6 6 -#> TTGTTTGTGTAAATTC-1 5 5 5 5 4 4 -#> SNN_k50_k24 SNN_k50_k25 SNN_k50_k26 SNN_k50_k27 SNN_k50_k28 GraphBased Maynard -#> <integer> <integer> <integer> <integer> <integer> <integer> <factor> -#> AAACAACGAATAGTTC-1 11 12 13 13 14 6 WM -#> AAACAAGTATCTCCCA-1 1 6 5 5 4 3 6 -#> AAACAATCTACTAGCA-1 9 9 9 9 9 2 1 -#> AAACACCAATAACTGC-1 20 21 22 21 22 5 5 -#> AAACAGCTTTCAGAAG-1 6 5 4 4 3 1 4 -#> ... ... ... ... ... ... ... ... -#> TTGTTGTGTGTCAAGA-1 1 10 10 10 10 5 5 -#> TTGTTTCACATCCAGG-1 17 18 19 18 19 2 WM -#> TTGTTTCATTAGTCTA-1 13 14 15 15 16 2 WM -#> TTGTTTCCATACAACT-1 6 5 4 4 3 7 6 -#> TTGTTTGTGTAAATTC-1 4 3 3 3 2 1 1 -#> Martinowich layer_guess layer_guess_reordered layer_guess_reordered_short -#> <factor> <factor> <factor> <factor> -#> AAACAACGAATAGTTC-1 WM Layer1 Layer1 L1 -#> AAACAAGTATCTCCCA-1 6 Layer3 Layer3 L3 -#> AAACAATCTACTAGCA-1 1 Layer1 Layer1 L1 -#> AAACACCAATAACTGC-1 5 WM WM WM -#> AAACAGCTTTCAGAAG-1 4 Layer6 Layer6 L6 -#> ... ... ... ... ... -#> TTGTTGTGTGTCAAGA-1 4 Layer6 Layer6 L6 -#> TTGTTTCACATCCAGG-1 WM WM WM WM -#> TTGTTTCATTAGTCTA-1 WM WM WM WM -#> TTGTTTCCATACAACT-1 6 Layer6 Layer6 L6 -#> TTGTTTGTGTAAATTC-1 1 Layer1 Layer1 L1 -#> expr_chrM expr_chrM_ratio SpatialDE_PCA SpatialDE_pool_PCA HVG_PCA -#> <numeric> <numeric> <integer> <integer> <integer> -#> AAACAACGAATAGTTC-1 88 0.0928270 4 5 3 -#> AAACAAGTATCTCCCA-1 657 0.1541892 2 3 1 -#> AAACAATCTACTAGCA-1 431 0.2188928 4 4 4 -#> AAACACCAATAACTGC-1 272 0.0807601 6 7 6 -#> AAACAGCTTTCAGAAG-1 502 0.1683999 1 1 3 -#> ... ... ... ... ... ... -#> TTGTTGTGTGTCAAGA-1 475 0.164931 1 2 2 -#> TTGTTTCACATCCAGG-1 320 0.121212 5 5 4 -#> TTGTTTCATTAGTCTA-1 262 0.127000 5 5 4 -#> TTGTTTCCATACAACT-1 161 0.156159 4 8 6 -#> TTGTTTGTGTAAATTC-1 667 0.254095 1 1 2 -#> pseudobulk_PCA markers_PCA SpatialDE_UMAP SpatialDE_pool_UMAP HVG_UMAP -#> <integer> <integer> <integer> <integer> <integer> -#> AAACAACGAATAGTTC-1 5 4 1 2 1 -#> AAACAAGTATCTCCCA-1 2 2 1 3 1 -#> AAACAATCTACTAGCA-1 4 8 2 4 5 -#> AAACACCAATAACTGC-1 6 8 5 7 7 -#> AAACAGCTTTCAGAAG-1 1 1 2 3 6 -#> ... ... ... ... ... ... -#> TTGTTGTGTGTCAAGA-1 2 1 1 3 2 -#> TTGTTTCACATCCAGG-1 5 6 4 5 5 -#> TTGTTTCATTAGTCTA-1 4 1 4 5 7 -#> TTGTTTCCATACAACT-1 2 3 1 2 3 -#> TTGTTTGTGTAAATTC-1 7 4 2 1 4 -#> pseudobulk_UMAP markers_UMAP SpatialDE_PCA_spatial SpatialDE_pool_PCA_spatial -#> <integer> <integer> <integer> <integer> -#> AAACAACGAATAGTTC-1 3 1 3 5 -#> AAACAAGTATCTCCCA-1 2 1 4 1 -#> AAACAATCTACTAGCA-1 3 6 3 4 -#> AAACACCAATAACTGC-1 7 1 7 6 -#> AAACAGCTTTCAGAAG-1 1 1 1 2 -#> ... ... ... ... ... -#> TTGTTGTGTGTCAAGA-1 2 3 1 1 -#> TTGTTTCACATCCAGG-1 6 1 5 5 -#> TTGTTTCATTAGTCTA-1 4 2 5 5 -#> TTGTTTCCATACAACT-1 3 1 4 8 -#> TTGTTTGTGTAAATTC-1 2 6 2 2 -#> HVG_PCA_spatial pseudobulk_PCA_spatial markers_PCA_spatial -#> <integer> <integer> <integer> -#> AAACAACGAATAGTTC-1 5 4 3 -#> AAACAAGTATCTCCCA-1 2 3 1 -#> AAACAATCTACTAGCA-1 3 5 7 -#> AAACACCAATAACTGC-1 7 7 7 -#> AAACAGCTTTCAGAAG-1 1 1 2 -#> ... ... ... ... -#> TTGTTGTGTGTCAAGA-1 4 2 6 -#> TTGTTTCACATCCAGG-1 5 4 4 -#> TTGTTTCATTAGTCTA-1 5 4 2 -#> TTGTTTCCATACAACT-1 2 2 4 -#> TTGTTTGTGTAAATTC-1 1 3 2 -#> SpatialDE_UMAP_spatial SpatialDE_pool_UMAP_spatial HVG_UMAP_spatial -#> <integer> <integer> <integer> -#> AAACAACGAATAGTTC-1 1 1 1 -#> AAACAAGTATCTCCCA-1 2 2 1 -#> AAACAATCTACTAGCA-1 2 1 4 -#> AAACACCAATAACTGC-1 7 8 7 -#> AAACAGCTTTCAGAAG-1 8 2 8 -#> ... ... ... ... -#> TTGTTGTGTGTCAAGA-1 6 1 4 -#> TTGTTTCACATCCAGG-1 5 5 5 -#> TTGTTTCATTAGTCTA-1 5 5 8 -#> TTGTTTCCATACAACT-1 2 3 2 -#> TTGTTTGTGTAAATTC-1 1 2 1 -#> pseudobulk_UMAP_spatial markers_UMAP_spatial spatialLIBD ManualAnnotation -#> <integer> <integer> <factor> <character> -#> AAACAACGAATAGTTC-1 1 1 L1 NA -#> AAACAAGTATCTCCCA-1 2 1 L3 NA -#> AAACAATCTACTAGCA-1 1 6 L1 NA -#> AAACACCAATAACTGC-1 8 1 WM NA -#> AAACAGCTTTCAGAAG-1 1 1 L6 NA -#> ... ... ... ... ... -#> TTGTTGTGTGTCAAGA-1 1 1 L6 NA -#> TTGTTTCACATCCAGG-1 8 1 WM NA -#> TTGTTTCATTAGTCTA-1 1 1 WM NA -#> TTGTTTCCATACAACT-1 4 7 L6 NA -#> TTGTTTGTGTAAATTC-1 2 5 L1 NA -#> in_tissue array_row array_col imported_GraphBased imported_spatialLIBD -#> <logical> <integer> <integer> <integer> <character> -#> AAACAACGAATAGTTC-1 TRUE 0 16 6 L1 -#> AAACAAGTATCTCCCA-1 TRUE 50 102 3 L3 -#> AAACAATCTACTAGCA-1 TRUE 3 43 2 L1 -#> AAACACCAATAACTGC-1 TRUE 59 19 5 WM -#> AAACAGCTTTCAGAAG-1 TRUE 43 9 1 L6 -#> ... ... ... ... ... ... -#> TTGTTGTGTGTCAAGA-1 TRUE 31 77 5 L6 -#> TTGTTTCACATCCAGG-1 TRUE 58 42 2 WM -#> TTGTTTCATTAGTCTA-1 TRUE 60 30 2 WM -#> TTGTTTCCATACAACT-1 TRUE 45 27 7 L6 -#> TTGTTTGTGTAAATTC-1 TRUE 7 51 1 L1 +#> key sample_id Cluster sum_umi +#> <character> <character> <integer> <numeric> +#> AAACAACGAATAGTTC-1 AAACAACGAATAGTTC-1_1.. 151507 6 948 +#> AAACAAGTATCTCCCA-1 AAACAAGTATCTCCCA-1_1.. 151507 3 4261 +#> AAACAATCTACTAGCA-1 AAACAATCTACTAGCA-1_1.. 151507 2 1969 +#> AAACACCAATAACTGC-1 AAACACCAATAACTGC-1_1.. 151507 5 3368 +#> AAACAGCTTTCAGAAG-1 AAACAGCTTTCAGAAG-1_1.. 151507 1 2981 +#> ... ... ... ... ... +#> TTGTTGTGTGTCAAGA-1 TTGTTGTGTGTCAAGA-1_1.. 151676 5 2880 +#> TTGTTTCACATCCAGG-1 TTGTTTCACATCCAGG-1_1.. 151676 2 2640 +#> TTGTTTCATTAGTCTA-1 TTGTTTCATTAGTCTA-1_1.. 151676 2 2063 +#> TTGTTTCCATACAACT-1 TTGTTTCCATACAACT-1_1.. 151676 7 1031 +#> TTGTTTGTGTAAATTC-1 TTGTTTGTGTAAATTC-1_1.. 151676 1 2625 +#> sum_gene subject position replicate +#> <integer> <character> <character> <character> +#> AAACAACGAATAGTTC-1 727 Br5292 0 1 +#> AAACAAGTATCTCCCA-1 2170 Br5292 0 1 +#> AAACAATCTACTAGCA-1 1093 Br5292 0 1 +#> AAACACCAATAACTGC-1 1896 Br5292 0 1 +#> AAACAGCTTTCAGAAG-1 1620 Br5292 0 1 +#> ... ... ... ... ... +#> TTGTTGTGTGTCAAGA-1 1638 Br8100 300 2 +#> TTGTTTCACATCCAGG-1 1526 Br8100 300 2 +#> TTGTTTCATTAGTCTA-1 1279 Br8100 300 2 +#> TTGTTTCCATACAACT-1 748 Br8100 300 2 +#> TTGTTTGTGTAAATTC-1 1392 Br8100 300 2 +#> subject_position discard cell_count SNN_k50_k4 SNN_k50_k5 +#> <character> <logical> <integer> <integer> <integer> +#> AAACAACGAATAGTTC-1 Br5292_pos0 FALSE 0 1 1 +#> AAACAAGTATCTCCCA-1 Br5292_pos0 FALSE 3 1 1 +#> AAACAATCTACTAGCA-1 Br5292_pos0 FALSE 2 3 2 +#> AAACACCAATAACTGC-1 Br5292_pos0 FALSE 5 2 3 +#> AAACAGCTTTCAGAAG-1 Br5292_pos0 FALSE 3 1 1 +#> ... ... ... ... ... ... +#> TTGTTGTGTGTCAAGA-1 Br8100_pos300 FALSE 1 1 1 +#> TTGTTTCACATCCAGG-1 Br8100_pos300 FALSE 6 2 3 +#> TTGTTTCATTAGTCTA-1 Br8100_pos300 FALSE 9 2 3 +#> TTGTTTCCATACAACT-1 Br8100_pos300 FALSE 2 1 1 +#> TTGTTTGTGTAAATTC-1 Br8100_pos300 FALSE 0 1 1 +#> SNN_k50_k6 SNN_k50_k7 SNN_k50_k8 SNN_k50_k9 SNN_k50_k10 +#> <integer> <integer> <integer> <integer> <integer> +#> AAACAACGAATAGTTC-1 1 3 3 4 4 +#> AAACAAGTATCTCCCA-1 1 1 1 1 1 +#> AAACAATCTACTAGCA-1 3 4 4 5 5 +#> AAACACCAATAACTGC-1 4 5 8 9 10 +#> AAACAGCTTTCAGAAG-1 1 1 1 3 3 +#> ... ... ... ... ... ... +#> TTGTTGTGTGTCAAGA-1 1 1 1 1 1 +#> TTGTTTCACATCCAGG-1 4 5 6 7 8 +#> TTGTTTCATTAGTCTA-1 4 5 6 7 8 +#> TTGTTTCCATACAACT-1 1 1 1 3 3 +#> TTGTTTGTGTAAATTC-1 2 2 2 2 2 +#> SNN_k50_k11 SNN_k50_k12 SNN_k50_k13 SNN_k50_k14 SNN_k50_k15 +#> <integer> <integer> <integer> <integer> <integer> +#> AAACAACGAATAGTTC-1 5 5 5 6 7 +#> AAACAAGTATCTCCCA-1 4 4 4 4 3 +#> AAACAATCTACTAGCA-1 6 6 6 7 8 +#> AAACACCAATAACTGC-1 11 10 9 10 11 +#> AAACAGCTTTCAGAAG-1 3 3 3 3 2 +#> ... ... ... ... ... ... +#> TTGTTGTGTGTCAAGA-1 4 4 4 4 3 +#> TTGTTTCACATCCAGG-1 9 8 8 9 10 +#> TTGTTTCATTAGTCTA-1 9 8 8 9 10 +#> TTGTTTCCATACAACT-1 3 3 3 3 2 +#> TTGTTTGTGTAAATTC-1 1 1 1 1 5 +#> SNN_k50_k16 SNN_k50_k17 SNN_k50_k18 SNN_k50_k19 SNN_k50_k20 +#> <integer> <integer> <integer> <integer> <integer> +#> AAACAACGAATAGTTC-1 7 9 10 10 10 +#> AAACAAGTATCTCCCA-1 3 3 2 2 2 +#> AAACAATCTACTAGCA-1 8 7 8 8 8 +#> AAACACCAATAACTGC-1 11 12 13 12 11 +#> AAACAGCTTTCAGAAG-1 2 2 1 1 1 +#> ... ... ... ... ... ... +#> TTGTTGTGTGTCAAGA-1 3 3 2 2 2 +#> TTGTTTCACATCCAGG-1 10 11 12 18 18 +#> TTGTTTCATTAGTCTA-1 10 11 12 15 15 +#> TTGTTTCCATACAACT-1 2 2 1 1 1 +#> TTGTTTGTGTAAATTC-1 5 5 5 5 5 +#> SNN_k50_k21 SNN_k50_k22 SNN_k50_k23 SNN_k50_k24 SNN_k50_k25 +#> <integer> <integer> <integer> <integer> <integer> +#> AAACAACGAATAGTTC-1 10 11 11 11 12 +#> AAACAAGTATCTCCCA-1 2 1 1 1 6 +#> AAACAATCTACTAGCA-1 8 9 9 9 9 +#> AAACACCAATAACTGC-1 11 12 20 20 21 +#> AAACAGCTTTCAGAAG-1 1 6 6 6 5 +#> ... ... ... ... ... ... +#> TTGTTGTGTGTCAAGA-1 2 1 1 1 10 +#> TTGTTTCACATCCAGG-1 17 18 17 17 18 +#> TTGTTTCATTAGTCTA-1 14 15 14 13 14 +#> TTGTTTCCATACAACT-1 1 6 6 6 5 +#> TTGTTTGTGTAAATTC-1 5 4 4 4 3 +#> SNN_k50_k26 SNN_k50_k27 SNN_k50_k28 GraphBased Maynard +#> <integer> <integer> <integer> <integer> <factor> +#> AAACAACGAATAGTTC-1 13 13 14 6 WM +#> AAACAAGTATCTCCCA-1 5 5 4 3 6 +#> AAACAATCTACTAGCA-1 9 9 9 2 1 +#> AAACACCAATAACTGC-1 22 21 22 5 5 +#> AAACAGCTTTCAGAAG-1 4 4 3 1 4 +#> ... ... ... ... ... ... +#> TTGTTGTGTGTCAAGA-1 10 10 10 5 5 +#> TTGTTTCACATCCAGG-1 19 18 19 2 WM +#> TTGTTTCATTAGTCTA-1 15 15 16 2 WM +#> TTGTTTCCATACAACT-1 4 4 3 7 6 +#> TTGTTTGTGTAAATTC-1 3 3 2 1 1 +#> Martinowich layer_guess layer_guess_reordered +#> <factor> <factor> <factor> +#> AAACAACGAATAGTTC-1 WM Layer1 Layer1 +#> AAACAAGTATCTCCCA-1 6 Layer3 Layer3 +#> AAACAATCTACTAGCA-1 1 Layer1 Layer1 +#> AAACACCAATAACTGC-1 5 WM WM +#> AAACAGCTTTCAGAAG-1 4 Layer6 Layer6 +#> ... ... ... ... +#> TTGTTGTGTGTCAAGA-1 4 Layer6 Layer6 +#> TTGTTTCACATCCAGG-1 WM WM WM +#> TTGTTTCATTAGTCTA-1 WM WM WM +#> TTGTTTCCATACAACT-1 6 Layer6 Layer6 +#> TTGTTTGTGTAAATTC-1 1 Layer1 Layer1 +#> layer_guess_reordered_short expr_chrM expr_chrM_ratio +#> <factor> <numeric> <numeric> +#> AAACAACGAATAGTTC-1 L1 88 0.0928270 +#> AAACAAGTATCTCCCA-1 L3 657 0.1541892 +#> AAACAATCTACTAGCA-1 L1 431 0.2188928 +#> AAACACCAATAACTGC-1 WM 272 0.0807601 +#> AAACAGCTTTCAGAAG-1 L6 502 0.1683999 +#> ... ... ... ... +#> TTGTTGTGTGTCAAGA-1 L6 475 0.164931 +#> TTGTTTCACATCCAGG-1 WM 320 0.121212 +#> TTGTTTCATTAGTCTA-1 WM 262 0.127000 +#> TTGTTTCCATACAACT-1 L6 161 0.156159 +#> TTGTTTGTGTAAATTC-1 L1 667 0.254095 +#> SpatialDE_PCA SpatialDE_pool_PCA HVG_PCA pseudobulk_PCA +#> <integer> <integer> <integer> <integer> +#> AAACAACGAATAGTTC-1 4 5 3 5 +#> AAACAAGTATCTCCCA-1 2 3 1 2 +#> AAACAATCTACTAGCA-1 4 4 4 4 +#> AAACACCAATAACTGC-1 6 7 6 6 +#> AAACAGCTTTCAGAAG-1 1 1 3 1 +#> ... ... ... ... ... +#> TTGTTGTGTGTCAAGA-1 1 2 2 2 +#> TTGTTTCACATCCAGG-1 5 5 4 5 +#> TTGTTTCATTAGTCTA-1 5 5 4 4 +#> TTGTTTCCATACAACT-1 4 8 6 2 +#> TTGTTTGTGTAAATTC-1 1 1 2 7 +#> markers_PCA SpatialDE_UMAP SpatialDE_pool_UMAP HVG_UMAP +#> <integer> <integer> <integer> <integer> +#> AAACAACGAATAGTTC-1 4 1 2 1 +#> AAACAAGTATCTCCCA-1 2 1 3 1 +#> AAACAATCTACTAGCA-1 8 2 4 5 +#> AAACACCAATAACTGC-1 8 5 7 7 +#> AAACAGCTTTCAGAAG-1 1 2 3 6 +#> ... ... ... ... ... +#> TTGTTGTGTGTCAAGA-1 1 1 3 2 +#> TTGTTTCACATCCAGG-1 6 4 5 5 +#> TTGTTTCATTAGTCTA-1 1 4 5 7 +#> TTGTTTCCATACAACT-1 3 1 2 3 +#> TTGTTTGTGTAAATTC-1 4 2 1 4 +#> pseudobulk_UMAP markers_UMAP SpatialDE_PCA_spatial +#> <integer> <integer> <integer> +#> AAACAACGAATAGTTC-1 3 1 3 +#> AAACAAGTATCTCCCA-1 2 1 4 +#> AAACAATCTACTAGCA-1 3 6 3 +#> AAACACCAATAACTGC-1 7 1 7 +#> AAACAGCTTTCAGAAG-1 1 1 1 +#> ... ... ... ... +#> TTGTTGTGTGTCAAGA-1 2 3 1 +#> TTGTTTCACATCCAGG-1 6 1 5 +#> TTGTTTCATTAGTCTA-1 4 2 5 +#> TTGTTTCCATACAACT-1 3 1 4 +#> TTGTTTGTGTAAATTC-1 2 6 2 +#> SpatialDE_pool_PCA_spatial HVG_PCA_spatial +#> <integer> <integer> +#> AAACAACGAATAGTTC-1 5 5 +#> AAACAAGTATCTCCCA-1 1 2 +#> AAACAATCTACTAGCA-1 4 3 +#> AAACACCAATAACTGC-1 6 7 +#> AAACAGCTTTCAGAAG-1 2 1 +#> ... ... ... +#> TTGTTGTGTGTCAAGA-1 1 4 +#> TTGTTTCACATCCAGG-1 5 5 +#> TTGTTTCATTAGTCTA-1 5 5 +#> TTGTTTCCATACAACT-1 8 2 +#> TTGTTTGTGTAAATTC-1 2 1 +#> pseudobulk_PCA_spatial markers_PCA_spatial +#> <integer> <integer> +#> AAACAACGAATAGTTC-1 4 3 +#> AAACAAGTATCTCCCA-1 3 1 +#> AAACAATCTACTAGCA-1 5 7 +#> AAACACCAATAACTGC-1 7 7 +#> AAACAGCTTTCAGAAG-1 1 2 +#> ... ... ... +#> TTGTTGTGTGTCAAGA-1 2 6 +#> TTGTTTCACATCCAGG-1 4 4 +#> TTGTTTCATTAGTCTA-1 4 2 +#> TTGTTTCCATACAACT-1 2 4 +#> TTGTTTGTGTAAATTC-1 3 2 +#> SpatialDE_UMAP_spatial SpatialDE_pool_UMAP_spatial +#> <integer> <integer> +#> AAACAACGAATAGTTC-1 1 1 +#> AAACAAGTATCTCCCA-1 2 2 +#> AAACAATCTACTAGCA-1 2 1 +#> AAACACCAATAACTGC-1 7 8 +#> AAACAGCTTTCAGAAG-1 8 2 +#> ... ... ... +#> TTGTTGTGTGTCAAGA-1 6 1 +#> TTGTTTCACATCCAGG-1 5 5 +#> TTGTTTCATTAGTCTA-1 5 5 +#> TTGTTTCCATACAACT-1 2 3 +#> TTGTTTGTGTAAATTC-1 1 2 +#> HVG_UMAP_spatial pseudobulk_UMAP_spatial +#> <integer> <integer> +#> AAACAACGAATAGTTC-1 1 1 +#> AAACAAGTATCTCCCA-1 1 2 +#> AAACAATCTACTAGCA-1 4 1 +#> AAACACCAATAACTGC-1 7 8 +#> AAACAGCTTTCAGAAG-1 8 1 +#> ... ... ... +#> TTGTTGTGTGTCAAGA-1 4 1 +#> TTGTTTCACATCCAGG-1 5 8 +#> TTGTTTCATTAGTCTA-1 8 1 +#> TTGTTTCCATACAACT-1 2 4 +#> TTGTTTGTGTAAATTC-1 1 2 +#> markers_UMAP_spatial spatialLIBD ManualAnnotation in_tissue +#> <integer> <factor> <character> <logical> +#> AAACAACGAATAGTTC-1 1 L1 NA TRUE +#> AAACAAGTATCTCCCA-1 1 L3 NA TRUE +#> AAACAATCTACTAGCA-1 6 L1 NA TRUE +#> AAACACCAATAACTGC-1 1 WM NA TRUE +#> AAACAGCTTTCAGAAG-1 1 L6 NA TRUE +#> ... ... ... ... ... +#> TTGTTGTGTGTCAAGA-1 1 L6 NA TRUE +#> TTGTTTCACATCCAGG-1 1 WM NA TRUE +#> TTGTTTCATTAGTCTA-1 1 WM NA TRUE +#> TTGTTTCCATACAACT-1 7 L6 NA TRUE +#> TTGTTTGTGTAAATTC-1 5 L1 NA TRUE +#> array_row array_col imported_GraphBased imported_spatialLIBD +#> <integer> <integer> <integer> <character> +#> AAACAACGAATAGTTC-1 0 16 6 L1 +#> AAACAAGTATCTCCCA-1 50 102 3 L3 +#> AAACAATCTACTAGCA-1 3 43 2 L1 +#> AAACACCAATAACTGC-1 59 19 5 WM +#> AAACAGCTTTCAGAAG-1 43 9 1 L6 +#> ... ... ... ... ... +#> TTGTTGTGTGTCAAGA-1 31 77 5 L6 +#> TTGTTTCACATCCAGG-1 58 42 2 WM +#> TTGTTTCATTAGTCTA-1 60 30 2 WM +#> TTGTTTCCATACAACT-1 45 27 7 L6 +#> TTGTTTGTGTAAATTC-1 7 51 1 L1Examples
## at the layer-level if (!exists("sce_layer")) sce_layer <- fetch_data("sce_layer") #> snapshotDate(): 2024-04-29 -#> 2024-07-11 14:08:44.042608 loading file /Users/leocollado/Library/Caches/org.R-project.R/R/BiocFileCache/fc1571d8e1fb_Human_DLPFC_Visium_processedData_sce_scran_sce_layer_spatialLIBD.Rdata%3Fdl%3D1 +#> 2024-07-12 13:31:43.167783 loading file /Users/leocollado/Library/Caches/org.R-project.R/R/BiocFileCache/fc1571d8e1fb_Human_DLPFC_Visium_processedData_sce_scran_sce_layer_spatialLIBD.Rdata%3Fdl%3D1 ## Explore the data sce_layer @@ -175,10 +175,12 @@Examples
#> dim: 22331 76 #> metadata(0): #> assays(2): counts logcounts -#> rownames(22331): ENSG00000243485 ENSG00000238009 ... ENSG00000278384 ENSG00000271254 +#> rownames(22331): ENSG00000243485 ENSG00000238009 ... ENSG00000278384 +#> ENSG00000271254 #> rowData names(10): source type ... is_top_hvg is_top_hvg_sce_layer #> colnames(76): 151507_Layer1 151507_Layer2 ... 151676_Layer6 151676_WM -#> colData names(13): sample_name layer_guess ... layer_guess_reordered_short spatialLIBD +#> colData names(13): sample_name layer_guess ... +#> layer_guess_reordered_short spatialLIBD #> reducedDimNames(6): PCA TSNE_perplexity5 ... UMAP_neighbors15 PCAsub #> mainExpName: NULL #> altExpNames(0): diff --git a/reference/frame_limits.html b/reference/frame_limits.html index 63513285..b1d681ed 100644 --- a/reference/frame_limits.html +++ b/reference/frame_limits.html @@ -27,7 +27,7 @@Examples
frame_limits(spe, sampleid = "151673") } #> snapshotDate(): 2024-04-29 -#> 2024-07-11 14:08:45.826378 loading file /Users/leocollado/Library/Caches/org.R-project.R/R/BiocFileCache/6f56656adcb_Human_DLPFC_Visium_processedData_sce_scran_spatialLIBD.Rdata%3Fdl%3D1 +#> 2024-07-12 13:31:44.633745 loading file /Users/leocollado/Library/Caches/org.R-project.R/R/BiocFileCache/6f56656adcb_Human_DLPFC_Visium_processedData_sce_scran_spatialLIBD.Rdata%3Fdl%3D1 #> $y_min #> [1] 64 #> diff --git a/reference/gene_set_enrichment.html b/reference/gene_set_enrichment.html index b4532ea3..4cb2699c 100644 --- a/reference/gene_set_enrichment.html +++ b/reference/gene_set_enrichment.html @@ -22,7 +22,7 @@Examples
modeling_results <- fetch_data(type = "modeling_results") } #> snapshotDate(): 2024-04-29 -#> 2024-07-11 14:08:56.604177 loading file /Users/leocollado/Library/Caches/org.R-project.R/R/BiocFileCache/fc154f26894b_Human_DLPFC_Visium_modeling_results.Rdata%3Fdl%3D1 +#> 2024-07-12 13:31:55.530746 loading file /Users/leocollado/Library/Caches/org.R-project.R/R/BiocFileCache/fc154f26894b_Human_DLPFC_Visium_modeling_results.Rdata%3Fdl%3D1 ## Compute the gene set enrichment results asd_sfari_enrichment <- gene_set_enrichment( @@ -188,28 +188,50 @@Examples
## Explore the results asd_sfari_enrichment -#> OR Pval test NumSig SetSize ID model_type fdr_cut -#> 1 1.2659915 1.761332e-03 WM 231 869 Gene_SFARI_all enrichment 0.1 -#> 2 1.1819109 9.895949e-02 WM 90 355 Gene_SFARI_high enrichment 0.1 -#> 3 1.2333378 1.853021e-01 WM 31 118 Gene_SFARI_syndromic enrichment 0.1 -#> 4 0.9702022 6.130806e-01 Layer1 71 869 Gene_SFARI_all enrichment 0.1 -#> 5 0.7192630 9.493328e-01 Layer1 22 355 Gene_SFARI_high enrichment 0.1 -#> 6 1.1216176 4.054532e-01 Layer1 11 118 Gene_SFARI_syndromic enrichment 0.1 -#> 7 2.7377140 5.096514e-21 Layer2 137 869 Gene_SFARI_all enrichment 0.1 -#> 8 2.7066379 8.845390e-10 Layer2 57 355 Gene_SFARI_high enrichment 0.1 -#> 9 2.6632367 3.564638e-04 Layer2 19 118 Gene_SFARI_syndromic enrichment 0.1 -#> 10 1.3579958 1.687561e-01 Layer3 14 869 Gene_SFARI_all enrichment 0.1 -#> 11 1.1738012 4.264658e-01 Layer3 5 355 Gene_SFARI_high enrichment 0.1 -#> 12 2.8947133 5.518757e-02 Layer3 4 118 Gene_SFARI_syndromic enrichment 0.1 -#> 13 1.2423009 1.544115e-01 Layer4 29 869 Gene_SFARI_all enrichment 0.1 -#> 14 1.1445522 3.748009e-01 Layer4 11 355 Gene_SFARI_high enrichment 0.1 -#> 15 2.6106289 1.575232e-02 Layer4 8 118 Gene_SFARI_syndromic enrichment 0.1 -#> 16 2.0969125 7.366596e-07 Layer5 60 869 Gene_SFARI_all enrichment 0.1 -#> 17 2.0956628 9.450654e-04 Layer5 25 355 Gene_SFARI_high enrichment 0.1 -#> 18 0.7064982 7.951889e-01 Layer5 3 118 Gene_SFARI_syndromic enrichment 0.1 -#> 19 2.6716353 1.472539e-07 Layer6 41 869 Gene_SFARI_all enrichment 0.1 -#> 20 2.6206690 5.845493e-04 Layer6 17 355 Gene_SFARI_high enrichment 0.1 -#> 21 2.2573853 7.927915e-02 Layer6 5 118 Gene_SFARI_syndromic enrichment 0.1 +#> OR Pval test NumSig SetSize ID model_type +#> 1 1.2659915 1.761332e-03 WM 231 869 Gene_SFARI_all enrichment +#> 2 1.1819109 9.895949e-02 WM 90 355 Gene_SFARI_high enrichment +#> 3 1.2333378 1.853021e-01 WM 31 118 Gene_SFARI_syndromic enrichment +#> 4 0.9702022 6.130806e-01 Layer1 71 869 Gene_SFARI_all enrichment +#> 5 0.7192630 9.493328e-01 Layer1 22 355 Gene_SFARI_high enrichment +#> 6 1.1216176 4.054532e-01 Layer1 11 118 Gene_SFARI_syndromic enrichment +#> 7 2.7377140 5.096514e-21 Layer2 137 869 Gene_SFARI_all enrichment +#> 8 2.7066379 8.845390e-10 Layer2 57 355 Gene_SFARI_high enrichment +#> 9 2.6632367 3.564638e-04 Layer2 19 118 Gene_SFARI_syndromic enrichment +#> 10 1.3579958 1.687561e-01 Layer3 14 869 Gene_SFARI_all enrichment +#> 11 1.1738012 4.264658e-01 Layer3 5 355 Gene_SFARI_high enrichment +#> 12 2.8947133 5.518757e-02 Layer3 4 118 Gene_SFARI_syndromic enrichment +#> 13 1.2423009 1.544115e-01 Layer4 29 869 Gene_SFARI_all enrichment +#> 14 1.1445522 3.748009e-01 Layer4 11 355 Gene_SFARI_high enrichment +#> 15 2.6106289 1.575232e-02 Layer4 8 118 Gene_SFARI_syndromic enrichment +#> 16 2.0969125 7.366596e-07 Layer5 60 869 Gene_SFARI_all enrichment +#> 17 2.0956628 9.450654e-04 Layer5 25 355 Gene_SFARI_high enrichment +#> 18 0.7064982 7.951889e-01 Layer5 3 118 Gene_SFARI_syndromic enrichment +#> 19 2.6716353 1.472539e-07 Layer6 41 869 Gene_SFARI_all enrichment +#> 20 2.6206690 5.845493e-04 Layer6 17 355 Gene_SFARI_high enrichment +#> 21 2.2573853 7.927915e-02 Layer6 5 118 Gene_SFARI_syndromic enrichment +#> fdr_cut +#> 1 0.1 +#> 2 0.1 +#> 3 0.1 +#> 4 0.1 +#> 5 0.1 +#> 6 0.1 +#> 7 0.1 +#> 8 0.1 +#> 9 0.1 +#> 10 0.1 +#> 11 0.1 +#> 12 0.1 +#> 13 0.1 +#> 14 0.1 +#> 15 0.1 +#> 16 0.1 +#> 17 0.1 +#> 18 0.1 +#> 19 0.1 +#> 20 0.1 +#> 21 0.1
This function takes a vector with cluster labels and sorts it by frequency -such that the most frequent cluster is the first one and so on.
+This function takes a vector with cluster labels, recasts it as a factor()
,
+and sorts the factor()
levels by frequency such that the most frequent
+cluster is the first level and so on.
A factor of length equal to clusters
where the levels are the new
-ordered clusters and the names of the factor are the original values from
-clusters
.
A factor()
version of clusters
where the levels are ordered by
+frequency.