forked from Yang-Liu1082/InvDN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_InvDN.yml
executable file
·88 lines (64 loc) · 1.57 KB
/
train_InvDN.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
#### general settings
name: InvDN_ResUnit_x4
use_tb_logger: true
model: InvDN
scale: 4
gpu_ids: [0]
#### datasets
datasets:
train:
name: SIDD
mode: LQGTRN
dataroot_GT: '' # path to training Clean images
dataroot_Noisy: '' # path to training Noisy images
dataroot_LQ: ~ # path to training reference LR images, not necessary, if not provided, LR images will be generated in dataloader
use_shuffle: true
n_workers: 6 # per GPU
batch_size: 28
GT_size: 144
use_flip: true
use_rot: true
color: RGB
val:
name: SIDD_val
mode: LQGTRN
dataroot_GT: '' # path to validation Clean images
dataroot_Noisy: '' # path to validation Noisy images
dataroot_LQ: ~ # path to validation reference LR images, not necessary, if not provided, LR images will be generated in dataloader
#### network structures
network_G:
which_model_G:
subnet_type: Resnet
in_nc: 3
out_nc: 3
block_num: [8, 8]
scale: 4
init: xavier
#### path
path:
pretrain_model_G:
strict_load: true
resume_state: ~
#### training settings: learning rate scheme, loss
train:
lr_G: !!float 2e-4
beta1: 0.9
beta2: 0.999
niter: 600000
warmup_iter: -1 # no warm up
lr_scheme: MultiStepLR
lr_steps: [100000, 200000, 300000, 400000, 500000]
lr_gamma: 0.5
pixel_criterion_forw: l2
pixel_criterion_back: l1
manual_seed: 10
val_freq: !!float 1
lambda_fit_forw: 16.
lambda_rec_back: 1
lambda_ce_forw: 1
weight_decay_G: !!float 1e-8
gradient_clipping: 10
#### logger
logger:
print_freq: 1
save_checkpoint_freq: !!float 1