-
Notifications
You must be signed in to change notification settings - Fork 163
/
mod_core_rnn_cell_impl.py
1063 lines (888 loc) · 40.3 KB
/
mod_core_rnn_cell_impl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#modified by Stephanie (@corcra) to enable initializing the bias term in lstm """
# ==============================================================================
"""Module implementing RNN Cells."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import contextlib
import hashlib
import math
import numbers
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.framework import tensor_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import clip_ops
from tensorflow.python.ops import embedding_ops
from tensorflow.python.ops import init_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn_ops
from tensorflow.python.ops import partitioned_variables
from tensorflow.python.ops import random_ops
from tensorflow.python.ops import variable_scope as vs
from tensorflow.python.ops.math_ops import sigmoid
from tensorflow.python.ops.math_ops import tanh
#from tensorflow.python.ops.rnn_cell_impl import _RNNCell as RNNCell
from tensorflow.python.ops.rnn_cell_impl import RNNCell
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.util import nest
_BIAS_VARIABLE_NAME = "biases"
_WEIGHTS_VARIABLE_NAME = "weights"
@contextlib.contextmanager
def _checked_scope(cell, scope, reuse=None, **kwargs):
if reuse is not None:
kwargs["reuse"] = reuse
with vs.variable_scope(scope, **kwargs) as checking_scope:
scope_name = checking_scope.name
if hasattr(cell, "_scope"):
cell_scope = cell._scope # pylint: disable=protected-access
if cell_scope.name != checking_scope.name:
raise ValueError(
"Attempt to reuse RNNCell %s with a different variable scope than "
"its first use. First use of cell was with scope '%s', this "
"attempt is with scope '%s'. Please create a new instance of the "
"cell if you would like it to use a different set of weights. "
"If before you were using: MultiRNNCell([%s(...)] * num_layers), "
"change to: MultiRNNCell([%s(...) for _ in range(num_layers)]). "
"If before you were using the same cell instance as both the "
"forward and reverse cell of a bidirectional RNN, simply create "
"two instances (one for forward, one for reverse). "
"In May 2017, we will start transitioning this cell's behavior "
"to use existing stored weights, if any, when it is called "
"with scope=None (which can lead to silent model degradation, so "
"this error will remain until then.)"
% (cell, cell_scope.name, scope_name, type(cell).__name__,
type(cell).__name__))
else:
weights_found = False
try:
with vs.variable_scope(checking_scope, reuse=True):
vs.get_variable(_WEIGHTS_VARIABLE_NAME)
weights_found = True
except ValueError:
pass
if weights_found and reuse is None:
raise ValueError(
"Attempt to have a second RNNCell use the weights of a variable "
"scope that already has weights: '%s'; and the cell was not "
"constructed as %s(..., reuse=True). "
"To share the weights of an RNNCell, simply "
"reuse it in your second calculation, or create a new one with "
"the argument reuse=True." % (scope_name, type(cell).__name__))
# Everything is OK. Update the cell's scope and yield it.
cell._scope = checking_scope # pylint: disable=protected-access
yield checking_scope
class BasicRNNCell(RNNCell):
"""The most basic RNN cell."""
def __init__(self, num_units, input_size=None, activation=tanh, reuse=None):
if input_size is not None:
logging.warn("%s: The input_size parameter is deprecated.", self)
self._num_units = num_units
self._activation = activation
self._reuse = reuse
@property
def state_size(self):
return self._num_units
@property
def output_size(self):
return self._num_units
def __call__(self, inputs, state, scope=None):
"""Most basic RNN: output = new_state = act(W * input + U * state + B)."""
with _checked_scope(self, scope or "basic_rnn_cell", reuse=self._reuse):
output = self._activation(
_linear([inputs, state], self._num_units, True))
return output, output
class GRUCell(RNNCell):
"""Gated Recurrent Unit cell (cf. http://arxiv.org/abs/1406.1078)."""
def __init__(self, num_units, input_size=None, activation=tanh, reuse=None):
if input_size is not None:
logging.warn("%s: The input_size parameter is deprecated.", self)
self._num_units = num_units
self._activation = activation
self._reuse = reuse
@property
def state_size(self):
return self._num_units
@property
def output_size(self):
return self._num_units
def __call__(self, inputs, state, scope=None):
"""Gated recurrent unit (GRU) with nunits cells."""
with _checked_scope(self, scope or "gru_cell", reuse=self._reuse):
with vs.variable_scope("gates"): # Reset gate and update gate.
# We start with bias of 1.0 to not reset and not update.
value = sigmoid(_linear(
[inputs, state], 2 * self._num_units, True, 1.0))
r, u = array_ops.split(
value=value,
num_or_size_splits=2,
axis=1)
with vs.variable_scope("candidate"):
c = self._activation(_linear([inputs, r * state],
self._num_units, True))
new_h = u * state + (1 - u) * c
return new_h, new_h
_LSTMStateTuple = collections.namedtuple("LSTMStateTuple", ("c", "h"))
class LSTMStateTuple(_LSTMStateTuple):
"""Tuple used by LSTM Cells for `state_size`, `zero_state`, and output state.
Stores two elements: `(c, h)`, in that order.
Only used when `state_is_tuple=True`.
"""
__slots__ = ()
@property
def dtype(self):
(c, h) = self
if not c.dtype == h.dtype:
raise TypeError("Inconsistent internal state: %s vs %s" %
(str(c.dtype), str(h.dtype)))
return c.dtype
class BasicLSTMCell(RNNCell):
"""Basic LSTM recurrent network cell.
The implementation is based on: http://arxiv.org/abs/1409.2329.
We add forget_bias (default: 1) to the biases of the forget gate in order to
reduce the scale of forgetting in the beginning of the training.
It does not allow cell clipping, a projection layer, and does not
use peep-hole connections: it is the basic baseline.
For advanced models, please use the full LSTMCell that follows.
"""
def __init__(self, num_units, forget_bias=1.0, input_size=None,
state_is_tuple=True, activation=tanh, reuse=None):
"""Initialize the basic LSTM cell.
Args:
num_units: int, The number of units in the LSTM cell.
forget_bias: float, The bias added to forget gates (see above).
input_size: Deprecated and unused.
state_is_tuple: If True, accepted and returned states are 2-tuples of
the `c_state` and `m_state`. If False, they are concatenated
along the column axis. The latter behavior will soon be deprecated.
activation: Activation function of the inner states.
reuse: (optional) Python boolean describing whether to reuse variables
in an existing scope. If not `True`, and the existing scope already has
the given variables, an error is raised.
"""
if not state_is_tuple:
logging.warn("%s: Using a concatenated state is slower and will soon be "
"deprecated. Use state_is_tuple=True.", self)
if input_size is not None:
logging.warn("%s: The input_size parameter is deprecated.", self)
self._num_units = num_units
self._forget_bias = forget_bias
self._state_is_tuple = state_is_tuple
self._activation = activation
self._reuse = reuse
@property
def state_size(self):
return (LSTMStateTuple(self._num_units, self._num_units)
if self._state_is_tuple else 2 * self._num_units)
@property
def output_size(self):
return self._num_units
def __call__(self, inputs, state, scope=None):
"""Long short-term memory cell (LSTM)."""
with _checked_scope(self, scope or "basic_lstm_cell", reuse=self._reuse):
# Parameters of gates are concatenated into one multiply for efficiency.
if self._state_is_tuple:
c, h = state
else:
c, h = array_ops.split(value=state, num_or_size_splits=2, axis=1)
concat = _linear([inputs, h], 4 * self._num_units, True)
# i = input_gate, j = new_input, f = forget_gate, o = output_gate
i, j, f, o = array_ops.split(value=concat, num_or_size_splits=4, axis=1)
new_c = (c * sigmoid(f + self._forget_bias) + sigmoid(i) *
self._activation(j))
new_h = self._activation(new_c) * sigmoid(o)
if self._state_is_tuple:
new_state = LSTMStateTuple(new_c, new_h)
else:
new_state = array_ops.concat([new_c, new_h], 1)
return new_h, new_state
class LSTMCell(RNNCell):
"""Long short-term memory unit (LSTM) recurrent network cell.
The default non-peephole implementation is based on:
http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
S. Hochreiter and J. Schmidhuber.
"Long Short-Term Memory". Neural Computation, 9(8):1735-1780, 1997.
The peephole implementation is based on:
https://research.google.com/pubs/archive/43905.pdf
Hasim Sak, Andrew Senior, and Francoise Beaufays.
"Long short-term memory recurrent neural network architectures for
large scale acoustic modeling." INTERSPEECH, 2014.
The class uses optional peep-hole connections, optional cell clipping, and
an optional projection layer.
"""
def __init__(self, num_units, input_size=None,
use_peepholes=False, cell_clip=None,
initializer=None, bias_start=0.0, num_proj=None, proj_clip=None,
num_unit_shards=None, num_proj_shards=None,
forget_bias=1.0, state_is_tuple=True,
activation=tanh, reuse=None):
"""Initialize the parameters for an LSTM cell.
Args:
num_units: int, The number of units in the LSTM cell
input_size: Deprecated and unused.
use_peepholes: bool, set True to enable diagonal/peephole connections.
cell_clip: (optional) A float value, if provided the cell state is clipped
by this value prior to the cell output activation.
initializer: (optional) The initializer to use for the weight and
projection matrices.
bias_start: (optional) The VALUE to initialize the bias to, in
the linear call
num_proj: (optional) int, The output dimensionality for the projection
matrices. If None, no projection is performed.
proj_clip: (optional) A float value. If `num_proj > 0` and `proj_clip` is
provided, then the projected values are clipped elementwise to within
`[-proj_clip, proj_clip]`.
num_unit_shards: Deprecated, will be removed by Jan. 2017.
Use a variable_scope partitioner instead.
num_proj_shards: Deprecated, will be removed by Jan. 2017.
Use a variable_scope partitioner instead.
forget_bias: Biases of the forget gate are initialized by default to 1
in order to reduce the scale of forgetting at the beginning of
the training.
state_is_tuple: If True, accepted and returned states are 2-tuples of
the `c_state` and `m_state`. If False, they are concatenated
along the column axis. This latter behavior will soon be deprecated.
activation: Activation function of the inner states.
reuse: (optional) Python boolean describing whether to reuse variables
in an existing scope. If not `True`, and the existing scope already has
the given variables, an error is raised.
"""
if not state_is_tuple:
logging.warn("%s: Using a concatenated state is slower and will soon be "
"deprecated. Use state_is_tuple=True.", self)
if input_size is not None:
logging.warn("%s: The input_size parameter is deprecated.", self)
if num_unit_shards is not None or num_proj_shards is not None:
logging.warn(
"%s: The num_unit_shards and proj_unit_shards parameters are "
"deprecated and will be removed in Jan 2017. "
"Use a variable scope with a partitioner instead.", self)
self._num_units = num_units
self._use_peepholes = use_peepholes
self._cell_clip = cell_clip
self._initializer = initializer
self._bias_start = bias_start
self._num_proj = num_proj
self._proj_clip = proj_clip
self._num_unit_shards = num_unit_shards
self._num_proj_shards = num_proj_shards
self._forget_bias = forget_bias
self._state_is_tuple = state_is_tuple
self._activation = activation
self._reuse = reuse
if num_proj:
self._state_size = (
LSTMStateTuple(num_units, num_proj)
if state_is_tuple else num_units + num_proj)
self._output_size = num_proj
else:
self._state_size = (
LSTMStateTuple(num_units, num_units)
if state_is_tuple else 2 * num_units)
self._output_size = num_units
@property
def state_size(self):
return self._state_size
@property
def output_size(self):
return self._output_size
def __call__(self, inputs, state, scope=None):
"""Run one step of LSTM.
Args:
inputs: input Tensor, 2D, batch x num_units.
state: if `state_is_tuple` is False, this must be a state Tensor,
`2-D, batch x state_size`. If `state_is_tuple` is True, this must be a
tuple of state Tensors, both `2-D`, with column sizes `c_state` and
`m_state`.
scope: VariableScope for the created subgraph; defaults to "lstm_cell".
Returns:
A tuple containing:
- A `2-D, [batch x output_dim]`, Tensor representing the output of the
LSTM after reading `inputs` when previous state was `state`.
Here output_dim is:
num_proj if num_proj was set,
num_units otherwise.
- Tensor(s) representing the new state of LSTM after reading `inputs` when
the previous state was `state`. Same type and shape(s) as `state`.
Raises:
ValueError: If input size cannot be inferred from inputs via
static shape inference.
"""
num_proj = self._num_units if self._num_proj is None else self._num_proj
if self._state_is_tuple:
(c_prev, m_prev) = state
else:
c_prev = array_ops.slice(state, [0, 0], [-1, self._num_units])
m_prev = array_ops.slice(state, [0, self._num_units], [-1, num_proj])
dtype = inputs.dtype
input_size = inputs.get_shape().with_rank(2)[1]
if input_size.value is None:
raise ValueError("Could not infer input size from inputs.get_shape()[-1]")
with _checked_scope(self, scope or "lstm_cell",
initializer=self._initializer,
reuse=self._reuse) as unit_scope:
if self._num_unit_shards is not None:
unit_scope.set_partitioner(
partitioned_variables.fixed_size_partitioner(
self._num_unit_shards))
# i = input_gate, j = new_input, f = forget_gate, o = output_gate
lstm_matrix = _linear([inputs, m_prev], 4 * self._num_units, bias=True, bias_start=self._bias_start)
i, j, f, o = array_ops.split(
value=lstm_matrix, num_or_size_splits=4, axis=1)
# Diagonal connections
if self._use_peepholes:
with vs.variable_scope(unit_scope) as projection_scope:
if self._num_unit_shards is not None:
projection_scope.set_partitioner(None)
w_f_diag = vs.get_variable(
"w_f_diag", shape=[self._num_units], dtype=dtype)
w_i_diag = vs.get_variable(
"w_i_diag", shape=[self._num_units], dtype=dtype)
w_o_diag = vs.get_variable(
"w_o_diag", shape=[self._num_units], dtype=dtype)
if self._use_peepholes:
c = (sigmoid(f + self._forget_bias + w_f_diag * c_prev) * c_prev +
sigmoid(i + w_i_diag * c_prev) * self._activation(j))
else:
c = (sigmoid(f + self._forget_bias) * c_prev + sigmoid(i) *
self._activation(j))
if self._cell_clip is not None:
# pylint: disable=invalid-unary-operand-type
c = clip_ops.clip_by_value(c, -self._cell_clip, self._cell_clip)
# pylint: enable=invalid-unary-operand-type
if self._use_peepholes:
m = sigmoid(o + w_o_diag * c) * self._activation(c)
else:
m = sigmoid(o) * self._activation(c)
if self._num_proj is not None:
with vs.variable_scope("projection") as proj_scope:
if self._num_proj_shards is not None:
proj_scope.set_partitioner(
partitioned_variables.fixed_size_partitioner(
self._num_proj_shards))
m = _linear(m, self._num_proj, bias=False)
if self._proj_clip is not None:
# pylint: disable=invalid-unary-operand-type
m = clip_ops.clip_by_value(m, -self._proj_clip, self._proj_clip)
# pylint: enable=invalid-unary-operand-type
new_state = (LSTMStateTuple(c, m) if self._state_is_tuple else
array_ops.concat([c, m], 1))
return m, new_state
class OutputProjectionWrapper(RNNCell):
"""Operator adding an output projection to the given cell.
Note: in many cases it may be more efficient to not use this wrapper,
but instead concatenate the whole sequence of your outputs in time,
do the projection on this batch-concatenated sequence, then split it
if needed or directly feed into a softmax.
"""
def __init__(self, cell, output_size, reuse=None):
"""Create a cell with output projection.
Args:
cell: an RNNCell, a projection to output_size is added to it.
output_size: integer, the size of the output after projection.
reuse: (optional) Python boolean describing whether to reuse variables
in an existing scope. If not `True`, and the existing scope already has
the given variables, an error is raised.
Raises:
TypeError: if cell is not an RNNCell.
ValueError: if output_size is not positive.
"""
if not isinstance(cell, RNNCell):
raise TypeError("The parameter cell is not RNNCell.")
if output_size < 1:
raise ValueError("Parameter output_size must be > 0: %d." % output_size)
self._cell = cell
self._output_size = output_size
self._reuse = reuse
@property
def state_size(self):
return self._cell.state_size
@property
def output_size(self):
return self._output_size
def zero_state(self, batch_size, dtype):
with ops.name_scope(type(self).__name__ + "ZeroState", values=[batch_size]):
return self._cell.zero_state(batch_size, dtype)
def __call__(self, inputs, state, scope=None):
"""Run the cell and output projection on inputs, starting from state."""
output, res_state = self._cell(inputs, state)
# Default scope: "OutputProjectionWrapper"
with _checked_scope(self, scope or "output_projection_wrapper",
reuse=self._reuse):
projected = _linear(output, self._output_size, True)
return projected, res_state
class InputProjectionWrapper(RNNCell):
"""Operator adding an input projection to the given cell.
Note: in many cases it may be more efficient to not use this wrapper,
but instead concatenate the whole sequence of your inputs in time,
do the projection on this batch-concatenated sequence, then split it.
"""
def __init__(self, cell, num_proj, input_size=None):
"""Create a cell with input projection.
Args:
cell: an RNNCell, a projection of inputs is added before it.
num_proj: Python integer. The dimension to project to.
input_size: Deprecated and unused.
Raises:
TypeError: if cell is not an RNNCell.
"""
if input_size is not None:
logging.warn("%s: The input_size parameter is deprecated.", self)
if not isinstance(cell, RNNCell):
raise TypeError("The parameter cell is not RNNCell.")
self._cell = cell
self._num_proj = num_proj
@property
def state_size(self):
return self._cell.state_size
@property
def output_size(self):
return self._cell.output_size
def zero_state(self, batch_size, dtype):
with ops.name_scope(type(self).__name__ + "ZeroState", values=[batch_size]):
return self._cell.zero_state(batch_size, dtype)
def __call__(self, inputs, state, scope=None):
"""Run the input projection and then the cell."""
# Default scope: "InputProjectionWrapper"
with vs.variable_scope(scope or "input_projection_wrapper"):
projected = _linear(inputs, self._num_proj, True)
return self._cell(projected, state)
def _enumerated_map_structure(map_fn, *args, **kwargs):
ix = [0]
def enumerated_fn(*inner_args, **inner_kwargs):
r = map_fn(ix[0], *inner_args, **inner_kwargs)
ix[0] += 1
return r
return nest.map_structure(enumerated_fn, *args, **kwargs)
class DropoutWrapper(RNNCell):
"""Operator adding dropout to inputs and outputs of the given cell."""
def __init__(self, cell, input_keep_prob=1.0, output_keep_prob=1.0,
state_keep_prob=1.0, variational_recurrent=False,
input_size=None, dtype=None, seed=None):
"""Create a cell with added input, state, and/or output dropout.
If `variational_recurrent` is set to `True` (**NOT** the default behavior),
then the the same dropout mask is applied at every step, as described in:
Y. Gal, Z Ghahramani. "A Theoretically Grounded Application of Dropout in
Recurrent Neural Networks". https://arxiv.org/abs/1512.05287
Otherwise a different dropout mask is applied at every time step.
Args:
cell: an RNNCell, a projection to output_size is added to it.
input_keep_prob: unit Tensor or float between 0 and 1, input keep
probability; if it is constant and 1, no input dropout will be added.
output_keep_prob: unit Tensor or float between 0 and 1, output keep
probability; if it is constant and 1, no output dropout will be added.
state_keep_prob: unit Tensor or float between 0 and 1, output keep
probability; if it is constant and 1, no output dropout will be added.
State dropout is performed on the *output* states of the cell.
variational_recurrent: Python bool. If `True`, then the same
dropout pattern is applied across all time steps per run call.
If this parameter is set, `input_size` **must** be provided.
input_size: (optional) (possibly nested tuple of) `TensorShape` objects
containing the depth(s) of the input tensors expected to be passed in to
the `DropoutWrapper`. Required and used **iff**
`variational_recurrent = True` and `input_keep_prob < 1`.
dtype: (optional) The `dtype` of the input, state, and output tensors.
Required and used **iff** `variational_recurrent = True`.
seed: (optional) integer, the randomness seed.
Raises:
TypeError: if cell is not an RNNCell.
ValueError: if any of the keep_probs are not between 0 and 1.
"""
if not isinstance(cell, RNNCell):
raise TypeError("The parameter cell is not a RNNCell.")
with ops.name_scope("DropoutWrapperInit"):
def tensor_and_const_value(v):
tensor_value = ops.convert_to_tensor(v)
const_value = tensor_util.constant_value(tensor_value)
return (tensor_value, const_value)
for prob, attr in [(input_keep_prob, "input_keep_prob"),
(state_keep_prob, "state_keep_prob"),
(output_keep_prob, "output_keep_prob")]:
tensor_prob, const_prob = tensor_and_const_value(prob)
if const_prob is not None:
if const_prob < 0 or const_prob > 1:
raise ValueError("Parameter %s must be between 0 and 1: %d"
% (attr, const_prob))
setattr(self, "_%s" % attr, float(const_prob))
else:
setattr(self, "_%s" % attr, tensor_prob)
# Set cell, variational_recurrent, seed before running the code below
self._cell = cell
self._variational_recurrent = variational_recurrent
self._seed = seed
self._recurrent_input_noise = None
self._recurrent_state_noise = None
self._recurrent_output_noise = None
if variational_recurrent:
if dtype is None:
raise ValueError(
"When variational_recurrent=True, dtype must be provided")
def convert_to_batch_shape(s):
# Prepend a 1 for the batch dimension; for recurrent
# variational dropout we use the same dropout mask for all
# batch elements.
return array_ops.concat(
([1], tensor_shape.TensorShape(s).as_list()), 0)
def batch_noise(s, inner_seed):
shape = convert_to_batch_shape(s)
return random_ops.random_uniform(shape, seed=inner_seed, dtype=dtype)
if (not isinstance(self._input_keep_prob, numbers.Real) or
self._input_keep_prob < 1.0):
if input_size is None:
raise ValueError(
"When variational_recurrent=True and input_keep_prob < 1.0 or "
"is unknown, input_size must be provided")
self._recurrent_input_noise = _enumerated_map_structure(
lambda i, s: batch_noise(s, inner_seed=self._gen_seed("input", i)),
input_size)
self._recurrent_state_noise = _enumerated_map_structure(
lambda i, s: batch_noise(s, inner_seed=self._gen_seed("state", i)),
cell.state_size)
self._recurrent_output_noise = _enumerated_map_structure(
lambda i, s: batch_noise(s, inner_seed=self._gen_seed("output", i)),
cell.output_size)
def _gen_seed(self, salt_prefix, index):
if self._seed is None:
return None
salt = "%s_%d" % (salt_prefix, index)
string = (str(self._seed) + salt).encode("utf-8")
return int(hashlib.md5(string).hexdigest()[:8], 16) & 0x7FFFFFFF
@property
def state_size(self):
return self._cell.state_size
@property
def output_size(self):
return self._cell.output_size
def zero_state(self, batch_size, dtype):
with ops.name_scope(type(self).__name__ + "ZeroState", values=[batch_size]):
return self._cell.zero_state(batch_size, dtype)
def _variational_recurrent_dropout_value(
self, index, value, noise, keep_prob):
"""Performs dropout given the pre-calculated noise tensor."""
# uniform [keep_prob, 1.0 + keep_prob)
random_tensor = keep_prob + noise
# 0. if [keep_prob, 1.0) and 1. if [1.0, 1.0 + keep_prob)
binary_tensor = math_ops.floor(random_tensor)
ret = math_ops.div(value, keep_prob) * binary_tensor
ret.set_shape(value.get_shape())
return ret
def _dropout(self, values, salt_prefix, recurrent_noise, keep_prob):
"""Decides whether to perform standard dropout or recurrent dropout."""
if not self._variational_recurrent:
def dropout(i, v):
return nn_ops.dropout(
v, keep_prob=keep_prob, seed=self._gen_seed(salt_prefix, i))
return _enumerated_map_structure(dropout, values)
else:
def dropout(i, v, n):
return self._variational_recurrent_dropout_value(i, v, n, keep_prob)
return _enumerated_map_structure(dropout, values, recurrent_noise)
def __call__(self, inputs, state, scope=None):
"""Run the cell with the declared dropouts."""
def _should_dropout(p):
return (not isinstance(p, float)) or p < 1
if _should_dropout(self._input_keep_prob):
inputs = self._dropout(inputs, "input",
self._recurrent_input_noise,
self._input_keep_prob)
output, new_state = self._cell(inputs, state, scope)
if _should_dropout(self._state_keep_prob):
new_state = self._dropout(new_state, "state",
self._recurrent_state_noise,
self._state_keep_prob)
if _should_dropout(self._output_keep_prob):
output = self._dropout(output, "output",
self._recurrent_output_noise,
self._output_keep_prob)
return output, new_state
class ResidualWrapper(RNNCell):
"""RNNCell wrapper that ensures cell inputs are added to the outputs."""
def __init__(self, cell):
"""Constructs a `ResidualWrapper` for `cell`.
Args:
cell: An instance of `RNNCell`.
"""
self._cell = cell
@property
def state_size(self):
return self._cell.state_size
@property
def output_size(self):
return self._cell.output_size
def zero_state(self, batch_size, dtype):
with ops.name_scope(type(self).__name__ + "ZeroState", values=[batch_size]):
return self._cell.zero_state(batch_size, dtype)
def __call__(self, inputs, state, scope=None):
"""Run the cell and add its inputs to its outputs.
Args:
inputs: cell inputs.
state: cell state.
scope: optional cell scope.
Returns:
Tuple of cell outputs and new state.
Raises:
TypeError: If cell inputs and outputs have different structure (type).
ValueError: If cell inputs and outputs have different structure (value).
"""
outputs, new_state = self._cell(inputs, state, scope=scope)
nest.assert_same_structure(inputs, outputs)
# Ensure shapes match
def assert_shape_match(inp, out):
inp.get_shape().assert_is_compatible_with(out.get_shape())
nest.map_structure(assert_shape_match, inputs, outputs)
res_outputs = nest.map_structure(
lambda inp, out: inp + out, inputs, outputs)
return (res_outputs, new_state)
class DeviceWrapper(RNNCell):
"""Operator that ensures an RNNCell runs on a particular device."""
def __init__(self, cell, device):
"""Construct a `DeviceWrapper` for `cell` with device `device`.
Ensures the wrapped `cell` is called with `tf.device(device)`.
Args:
cell: An instance of `RNNCell`.
device: A device string or function, for passing to `tf.device`.
"""
self._cell = cell
self._device = device
@property
def state_size(self):
return self._cell.state_size
@property
def output_size(self):
return self._cell.output_size
def zero_state(self, batch_size, dtype):
with ops.name_scope(type(self).__name__ + "ZeroState", values=[batch_size]):
return self._cell.zero_state(batch_size, dtype)
def __call__(self, inputs, state, scope=None):
"""Run the cell on specified device."""
with ops.device(self._device):
return self._cell(inputs, state, scope=scope)
class EmbeddingWrapper(RNNCell):
"""Operator adding input embedding to the given cell.
Note: in many cases it may be more efficient to not use this wrapper,
but instead concatenate the whole sequence of your inputs in time,
do the embedding on this batch-concatenated sequence, then split it and
feed into your RNN.
"""
def __init__(self, cell, embedding_classes, embedding_size, initializer=None,
reuse=None):
"""Create a cell with an added input embedding.
Args:
cell: an RNNCell, an embedding will be put before its inputs.
embedding_classes: integer, how many symbols will be embedded.
embedding_size: integer, the size of the vectors we embed into.
initializer: an initializer to use when creating the embedding;
if None, the initializer from variable scope or a default one is used.
reuse: (optional) Python boolean describing whether to reuse variables
in an existing scope. If not `True`, and the existing scope already has
the given variables, an error is raised.
Raises:
TypeError: if cell is not an RNNCell.
ValueError: if embedding_classes is not positive.
"""
if not isinstance(cell, RNNCell):
raise TypeError("The parameter cell is not RNNCell.")
if embedding_classes <= 0 or embedding_size <= 0:
raise ValueError("Both embedding_classes and embedding_size must be > 0: "
"%d, %d." % (embedding_classes, embedding_size))
self._cell = cell
self._embedding_classes = embedding_classes
self._embedding_size = embedding_size
self._initializer = initializer
self._reuse = reuse
@property
def state_size(self):
return self._cell.state_size
@property
def output_size(self):
return self._cell.output_size
def zero_state(self, batch_size, dtype):
with ops.name_scope(type(self).__name__ + "ZeroState", values=[batch_size]):
return self._cell.zero_state(batch_size, dtype)
def __call__(self, inputs, state, scope=None):
"""Run the cell on embedded inputs."""
with _checked_scope(self, scope or "embedding_wrapper", reuse=self._reuse):
with ops.device("/cpu:0"):
if self._initializer:
initializer = self._initializer
elif vs.get_variable_scope().initializer:
initializer = vs.get_variable_scope().initializer
else:
# Default initializer for embeddings should have variance=1.
sqrt3 = math.sqrt(3) # Uniform(-sqrt(3), sqrt(3)) has variance=1.
initializer = init_ops.random_uniform_initializer(-sqrt3, sqrt3)
if type(state) is tuple:
data_type = state[0].dtype
else:
data_type = state.dtype
embedding = vs.get_variable(
"embedding", [self._embedding_classes, self._embedding_size],
initializer=initializer,
dtype=data_type)
embedded = embedding_ops.embedding_lookup(
embedding, array_ops.reshape(inputs, [-1]))
return self._cell(embedded, state)
class MultiRNNCell(RNNCell):
"""RNN cell composed sequentially of multiple simple cells."""
def __init__(self, cells, state_is_tuple=True):
"""Create a RNN cell composed sequentially of a number of RNNCells.
Args:
cells: list of RNNCells that will be composed in this order.
state_is_tuple: If True, accepted and returned states are n-tuples, where
`n = len(cells)`. If False, the states are all
concatenated along the column axis. This latter behavior will soon be
deprecated.
Raises:
ValueError: if cells is empty (not allowed), or at least one of the cells
returns a state tuple but the flag `state_is_tuple` is `False`.
"""
if not cells:
raise ValueError("Must specify at least one cell for MultiRNNCell.")
if not nest.is_sequence(cells):
raise TypeError(
"cells must be a list or tuple, but saw: %s." % cells)
self._cells = cells
self._state_is_tuple = state_is_tuple
if not state_is_tuple:
if any(nest.is_sequence(c.state_size) for c in self._cells):
raise ValueError("Some cells return tuples of states, but the flag "
"state_is_tuple is not set. State sizes are: %s"
% str([c.state_size for c in self._cells]))
@property
def state_size(self):
if self._state_is_tuple:
return tuple(cell.state_size for cell in self._cells)
else:
return sum([cell.state_size for cell in self._cells])
@property
def output_size(self):
return self._cells[-1].output_size
def zero_state(self, batch_size, dtype):
with ops.name_scope(type(self).__name__ + "ZeroState", values=[batch_size]):
if self._state_is_tuple:
return tuple(cell.zero_state(batch_size, dtype) for cell in self._cells)
else:
# We know here that state_size of each cell is not a tuple and
# presumably does not contain TensorArrays or anything else fancy
return super(MultiRNNCell, self).zero_state(batch_size, dtype)
def __call__(self, inputs, state, scope=None):
"""Run this multi-layer cell on inputs, starting from state."""
with vs.variable_scope(scope or "multi_rnn_cell"):
cur_state_pos = 0
cur_inp = inputs
new_states = []
for i, cell in enumerate(self._cells):
with vs.variable_scope("cell_%d" % i):
if self._state_is_tuple:
if not nest.is_sequence(state):
raise ValueError(
"Expected state to be a tuple of length %d, but received: %s"
% (len(self.state_size), state))
cur_state = state[i]
else:
cur_state = array_ops.slice(
state, [0, cur_state_pos], [-1, cell.state_size])
cur_state_pos += cell.state_size
cur_inp, new_state = cell(cur_inp, cur_state)
new_states.append(new_state)
new_states = (tuple(new_states) if self._state_is_tuple else
array_ops.concat(new_states, 1))
return cur_inp, new_states
class _SlimRNNCell(RNNCell):
"""A simple wrapper for slim.rnn_cells."""
def __init__(self, cell_fn):
"""Create a SlimRNNCell from a cell_fn.
Args:
cell_fn: a function which takes (inputs, state, scope) and produces the
outputs and the new_state. Additionally when called with inputs=None and
state=None it should return (initial_outputs, initial_state).
Raises:
TypeError: if cell_fn is not callable
ValueError: if cell_fn cannot produce a valid initial state.
"""
if not callable(cell_fn):
raise TypeError("cell_fn %s needs to be callable", cell_fn)
self._cell_fn = cell_fn
self._cell_name = cell_fn.func.__name__
init_output, init_state = self._cell_fn(None, None)
output_shape = init_output.get_shape()
state_shape = init_state.get_shape()
self._output_size = output_shape.with_rank(2)[1].value
self._state_size = state_shape.with_rank(2)[1].value
if self._output_size is None:
raise ValueError("Initial output created by %s has invalid shape %s" %
(self._cell_name, output_shape))
if self._state_size is None:
raise ValueError("Initial state created by %s has invalid shape %s" %
(self._cell_name, state_shape))
@property
def state_size(self):
return self._state_size