forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sdga.tex
6533 lines (5912 loc) · 229 KB
/
sdga.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Differential Graded Sheaves}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
This chapter is a continuation of the discussion started in
Differential Graded Algebra, Section \ref{dga-section-introduction}.
A survey paper is \cite{Keller-survey}.
\section{Conventions}
\label{section-conventions}
\noindent
In this chapter we hold on to the convention that {\it ring} means
commutative ring with $1$. If $R$ is a ring, then an {\it $R$-algebra $A$}
will be an $R$-module $A$ endowed with an $R$-bilinear map $A \times A \to A$
(multiplication) such that multiplication is associative and has an
identity.
In other words, these are unital associative $R$-algebras
such that the structure map $R \to A$ maps into the center of $A$.
\section{Sheaves of graded algebras}
\label{section-ga}
\noindent
Please skip this section.
\begin{definition}
\label{definition-ga}
Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. A
{\it sheaf of graded $\mathcal{O}$-algebras}
or a {\it sheaf of graded algebras} on $(\mathcal{C}, \mathcal{O})$
is given by a family $\mathcal{A}^n$ indexed by $n \in \mathbf{Z}$
of $\mathcal{O}$-modules endowed with $\mathcal{O}$-bilinear maps
$$
\mathcal{A}^n \times \mathcal{A}^m \to \mathcal{A}^{n + m},\quad
(a, b) \longmapsto ab
$$
called the multiplication maps with the following properties
\begin{enumerate}
\item multiplication is associative, and
\item there is a global section $1$ of $\mathcal{A}^0$
which is a two-sided identity for multiplication.
\end{enumerate}
We often denote such a structure $\mathcal{A}$.
A {\it homomorphism of graded $\mathcal{O}$-algebras}
$f : \mathcal{A} \to \mathcal{B}$ is a family of maps
$f^n : \mathcal{A}^n \to \mathcal{B}^n$
of $\mathcal{O}$-modules compatible with the multiplication maps.
\end{definition}
\noindent
Given a graded $\mathcal{O}$-algebra $\mathcal{A}$
and an object $U \in \Ob(\mathcal{C})$ we use the notation
$$
\mathcal{A}(U) =
\Gamma(U, \mathcal{A}) =
\bigoplus\nolimits_{n \in \mathbf{Z}} \mathcal{A}^n(U)
$$
This is a graded $\mathcal{O}(U)$-algebra.
\begin{remark}
\label{remark-functoriality-ga}
Let $(f, f^\sharp) : (\Sh(\mathcal{C}), \mathcal{O}_\mathcal{C})
\to (\Sh(\mathcal{D}), \mathcal{O}_\mathcal{D})$
be a morphism of ringed topoi. We have
\begin{enumerate}
\item Let $\mathcal{A}$ be a graded $\mathcal{O}_\mathcal{C}$-algebra.
The multiplication maps of $\mathcal{A}$ induce multiplication maps
$f_*\mathcal{A}^n \times f_*\mathcal{A}^m \to f_*\mathcal{A}^{n + m}$
and via $f^\sharp$ we may view these as $\mathcal{O}_\mathcal{D}$-bilinear
maps. We will denote $f_*\mathcal{A}$ the graded
$\mathcal{O}_\mathcal{D}$-algebra we so obtain.
\item Let $\mathcal{B}$ be a graded
$\mathcal{O}_\mathcal{D}$-algebra.
The multiplication maps of $\mathcal{B}$ induce multiplication maps
$f^*\mathcal{B}^n \times f^*\mathcal{B}^m \to f^*\mathcal{B}^{n + m}$
and using $f^\sharp$ we may view these as $\mathcal{O}_\mathcal{C}$-bilinear
maps. We will denote $f^*\mathcal{B}$
the graded $\mathcal{O}_\mathcal{C}$-algebra we so obtain.
\item The set of homomorphisms $f^*\mathcal{B} \to \mathcal{A}$
of graded $\mathcal{O}_\mathcal{C}$-algebras is in
$1$-to-$1$ correspondence with the set of homomorphisms
$\mathcal{B} \to f_*\mathcal{A}$ of graded $\mathcal{O}_\mathcal{C}$-algebras.
\end{enumerate}
Part (3) follows immediately from the usual adjunction between $f^*$ and $f_*$
on sheaves of modules.
\end{remark}
\section{Sheaves of graded modules}
\label{section-graded-modules}
\noindent
Please skip this section.
\begin{definition}
\label{definition-gm}
Let $(\mathcal{C}, \mathcal{O})$ be a ringed site.
Let $\mathcal{A}$ be a sheaf of graded algebras
on $(\mathcal{C}, \mathcal{O})$.
A (right) {\it graded $\mathcal{A}$-module} or (right)
{\it graded module} over $\mathcal{A}$
is given by a family $\mathcal{M}^n$ indexed by $n \in \mathbf{Z}$
of $\mathcal{O}$-modules endowed with
$\mathcal{O}$-bilinear maps
$$
\mathcal{M}^n \times \mathcal{A}^m \to \mathcal{M}^{n + m},\quad
(x, a) \longmapsto xa
$$
called the multiplication maps with the following properties
\begin{enumerate}
\item multiplication satisfies $(xa)a' = x(aa')$,
\item the identity section $1$ of $\mathcal{A}^0$
acts as the identity on $\mathcal{M}^n$ for all $n$.
\end{enumerate}
We often say ``let $\mathcal{M}$ be a graded $\mathcal{A}$-module''
to indicate this situation.
A {\it homomorphism of graded $\mathcal{A}$-modules}
$f : \mathcal{M} \to \mathcal{N}$ is a family of maps
$f^n : \mathcal{M}^n \to \mathcal{N}^n$
of $\mathcal{O}$-modules compatible with the multiplication maps.
The category of (right) graded $\mathcal{A}$-modules
is denoted $\textit{Mod}(\mathcal{A})$.
\end{definition}
\noindent
We can define {\it left graded modules} in exactly the same manner
but our default in the chapter will be right modules.
\medskip\noindent
Given a graded $\mathcal{A}$-module $\mathcal{M}$
and an object $U \in \Ob(\mathcal{C})$ we use the notation
$$
\mathcal{M}(U) =
\Gamma(U, \mathcal{M}) =
\bigoplus\nolimits_{n \in \mathbf{Z}} \mathcal{M}^n(U)
$$
This is a (right) graded $\mathcal{A}(U)$-module.
\begin{lemma}
\label{lemma-gm-abelian}
Let $(\mathcal{C}, \mathcal{O})$ be a ringed site.
Let $\mathcal{A}$ be a graded $\mathcal{O}$-algebra.
The category $\textit{Mod}(\mathcal{A})$ is an abelian category
with the following properties
\begin{enumerate}
\item $\textit{Mod}(\mathcal{A})$ has arbitrary direct sums,
\item $\textit{Mod}(\mathcal{A})$ has arbitrary colimits,
\item filtered colimit in $\textit{Mod}(\mathcal{A})$ are exact,
\item $\textit{Mod}(\mathcal{A})$ has arbitrary products,
\item $\textit{Mod}(\mathcal{A})$ has arbitrary limits.
\end{enumerate}
The functor
$$
\textit{Mod}(\mathcal{A}) \longrightarrow \textit{Mod}(\mathcal{O}),\quad
\mathcal{M} \longmapsto \mathcal{M}^n
$$
sending a graded $\mathcal{A}$-module to its $n$th term commutes
with all limits and colimits.
\end{lemma}
\noindent
The lemma says that we may take limits and colimits termwise. It
also says (or implies if you like) that the forgetful functor
$$
\textit{Mod}(\mathcal{A})
\longrightarrow
\text{graded }\mathcal{O}\text{-modules}
$$
commutes with all limits and colimits.
\begin{proof}
Let us denote
$\text{gr}^n : \textit{Mod}(\mathcal{A}) \to \textit{Mod}(\mathcal{O})$
the functor in the statement of the lemma.
Consider a homomorphism $f : \mathcal{M} \to \mathcal{N}$
of graded $\mathcal{A}$-modules. The kernel
and cokernel of $f$ as maps of graded $\mathcal{O}$-modules
are additionally endowed with multiplication maps as in
Definition \ref{definition-gm}. Hence these are also
the kernel and cokernel in $\textit{Mod}(\mathcal{A})$.
Thus $\textit{Mod}(\mathcal{A})$ is an abelian category
and taking kernels and cokernels commutes with $\text{gr}^n$.
\medskip\noindent
To prove the existence of limits and colimits it is sufficient
to prove the existence of products and direct sums, see
Categories, Lemmas \ref{categories-lemma-limits-products-equalizers} and
\ref{categories-lemma-colimits-coproducts-coequalizers}.
The same lemmas show that
proving the commutation of limits and colimits with $\text{gr}^n$
follows if $\text{gr}^n$ commutes with direct sums and products.
\medskip\noindent
Let $\mathcal{M}_t$, $t \in T$ be a set of graded $\mathcal{A}$-modules.
Then we can consider the graded $\mathcal{A}$-module whose degree $n$
term is $\bigoplus_{t \in T} \mathcal{M}_t^n$ (with obvious multiplication
maps). The reader easily verifies that this is a direct sum in
$\textit{Mod}(\mathcal{A})$. Similarly for products.
\medskip\noindent
Observe that $\text{gr}^n$ is an exact functor for all $n$ and that
a complex $\mathcal{M}_1 \to \mathcal{M}_2 \to \mathcal{M}_3$
of $\textit{Mod}(\mathcal{A})$ is exact if and only if
$\text{gr}^n\mathcal{M}_1 \to \text{gr}^n\mathcal{M}_2 \to
\text{gr}^n\mathcal{M}_3$ is exact in $\textit{Mod}(\mathcal{O})$
for all $n$. Hence we conclude that (3) holds as filtered
colimits are exact in $\textit{Mod}(\mathcal{O})$;
it is a Grothendieck abelian category, see
Cohomology on Sites, Section \ref{sites-cohomology-section-unbounded}.
\end{proof}
\section{The graded category of sheaves of graded modules}
\label{section-gm-gr-cat}
\noindent
Please skip this section. This section is the analogue of
Differential Graded Algebra, Example \ref{dga-example-gm-gr-cat}.
For our conventions on graded categories, please see
Differential Graded Algebra, Section \ref{dga-section-graded}.
\medskip\noindent
Let $(\mathcal{C}, \mathcal{O})$ be a ringed site.
Let $\mathcal{A}$ be a sheaf of graded algebras
on $(\mathcal{C}, \mathcal{O})$. We will construct
a graded category $\textit{Mod}^{gr}(\mathcal{A})$ over
$R = \Gamma(\mathcal{C}, \mathcal{O})$
whose associated category $(\textit{Mod}^{gr}(\mathcal{A}))^0$
is the category of graded $\mathcal{A}$-modules. As objects
of $\textit{Mod}^{gr}(\mathcal{A})$ we take right graded
$\mathcal{A}$-modules (see
Section \ref{section-graded-modules}). Given graded
$\mathcal{A}$-modules $\mathcal{L}$ and $\mathcal{M}$ we set
$$
\Hom_{\textit{Mod}^{gr}(\mathcal{A})}(\mathcal{L}, \mathcal{M}) =
\bigoplus\nolimits_{n \in \mathbf{Z}} \Hom^n(\mathcal{L}, \mathcal{M})
$$
where
$\Hom^n(\mathcal{L}, \mathcal{M})$
is the set of right $\mathcal{A}$-module maps
$f : \mathcal{L} \to \mathcal{M}$ which
are homogeneous of degree $n$. More precisely, $f$ is given
by a family of maps $f : \mathcal{L}^i \to \mathcal{M}^{i + n}$
for $i \in \mathbf{Z}$ compatible with the multiplication
maps. In terms of components, we have that
$$
\Hom^n(\mathcal{L}, \mathcal{M})
\subset
\prod\nolimits_{p + q = n}
\Hom_\mathcal{O}(\mathcal{L}^{-q}, \mathcal{M}^p)
$$
(observe reversal of indices) is the subset consisting of those
$f = (f_{p, q})$ such that
$$
f_{p, q}(m a) = f_{p - i, q + i}(m)a
$$
for local sections $a$ of $\mathcal{A}^i$ and
$m$ of $\mathcal{L}^{-q - i}$. For graded $\mathcal{A}$-modules
$\mathcal{K}$, $\mathcal{L}$, $\mathcal{M}$
we define composition in $\textit{Mod}^{gr}(\mathcal{A})$ via
the maps
$$
\Hom^m(\mathcal{L}, \mathcal{M}) \times
\Hom^n(\mathcal{K}, \mathcal{L}) \longrightarrow
\Hom^{n + m}(\mathcal{K}, \mathcal{M})
$$
by simple composition of right
$\mathcal{A}$-module maps: $(g, f) \mapsto g \circ f$.
\section{Tensor product for sheaves of graded modules}
\label{section-tensor-product}
\noindent
Please skip this section. This section is the analogue of part of
Differential Graded Algebra, Section \ref{dga-section-tensor-product}.
\medskip\noindent
Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{A}$
be a sheaf of graded algebras on $(\mathcal{C}, \mathcal{O})$.
Let $\mathcal{M}$ be a right graded $\mathcal{A}$-module
and let $\mathcal{N}$ be a left graded $\mathcal{A}$-module.
Then we define the {\it tensor product}
$\mathcal{M} \otimes_\mathcal{A} \mathcal{N}$
to be the graded $\mathcal{O}$-module whose degree $n$ term is
$$
(\mathcal{M} \otimes_\mathcal{A} \mathcal{N})^n =
\Coker\left(
\bigoplus\nolimits_{r + s + t = n} \mathcal{M}^r \otimes_\mathcal{O}
\mathcal{A}^s \otimes_\mathcal{O} \mathcal{N}^t
\longrightarrow
\bigoplus\nolimits_{p + q = n} \mathcal{M}^p \otimes_\mathcal{O} \mathcal{N}^q
\right)
$$
where the map sends the local section $x \otimes a \otimes y$
of $\mathcal{M}^r \otimes_\mathcal{O} \mathcal{A}^s
\otimes_\mathcal{O} \mathcal{N}^t$ to
$xa \otimes y - x \otimes ay$.
With this definition we have that
$(\mathcal{M} \otimes_\mathcal{A} \mathcal{N})^n$
is the sheafification of the presheaf
$U \mapsto (\mathcal{M}(U) \otimes_{\mathcal{A}(U)} \mathcal{N}(U))^n$
where the tensor product of graded modules is as defined in
Differential Graded Algebra, Section \ref{dga-section-tensor-product}.
\medskip\noindent
If we fix the left graded $\mathcal{A}$-module $\mathcal{N}$
we obtain a functor
$$
- \otimes_\mathcal{A} \mathcal{N} :
\textit{Mod}(\mathcal{A})
\longrightarrow
\text{Gr}(\textit{Mod}(\mathcal{O})) =
\text{graded }\mathcal{O}\text{-modules}
$$
For the notation $\text{Gr}(-)$ please see
Homology, Definition \ref{homology-definition-graded}.
The graded category of graded $\mathcal{O}$-modules is denoted
$\text{Gr}^{gr}(\textit{Mod}(\mathcal{O}))$, see
Differential Graded Algebra, Example
\ref{dga-example-graded-category-graded-objects}.
The functor above can be upgraded to a functor of graded categories
$$
- \otimes_\mathcal{A} \mathcal{N} :
\textit{Mod}^{gr}(\mathcal{A})
\longrightarrow
\text{Gr}^{gr}(\textit{Mod}(\mathcal{O}))
$$
by sending homomorphisms of degree $n$ from $\mathcal{M} \to \mathcal{M}'$
to the induced map of degree $n$ from
$\mathcal{M} \otimes_\mathcal{A} \mathcal{N}$ to
$\mathcal{M}' \otimes_\mathcal{A} \mathcal{N}$.
\section{Internal hom for sheaves of graded modules}
\label{section-internal-hom-graded}
\noindent
We urge the reader to skip this section.
\medskip\noindent
We are going to need the sheafified version of the construction
in Section \ref{section-gm-gr-cat}.
Let $(\mathcal{C}, \mathcal{O})$, $\mathcal{A}$,
$\mathcal{M}$, $\mathcal{L}$ be as in Section \ref{section-gm-gr-cat}.
Then we define
$$
\SheafHom^{gr}_\mathcal{A}(\mathcal{M}, \mathcal{L})
$$
as the graded $\mathcal{O}$-module whose degree $n$ term
$$
\SheafHom^n_\mathcal{A}(\mathcal{M}, \mathcal{L})
\subset
\prod\nolimits_{p + q = n}
\SheafHom_\mathcal{O}(\mathcal{L}^{-q}, \mathcal{M}^p)
$$
is the subsheaf consisting of those local sections $f = (f_{p, q})$ such that
$$
f_{p, q}(m a) = f_{p - i, q + i}(m)a
$$
for local sections $a$ of $\mathcal{A}^i$ and
$m$ of $\mathcal{L}^{-q - i}$. As in Section \ref{section-gm-gr-cat}
there is a composition map
$$
\SheafHom^{gr}_\mathcal{A}(\mathcal{L}, \mathcal{M}) \otimes_\mathcal{O}
\SheafHom^{gr}_\mathcal{A}(\mathcal{K}, \mathcal{L})
\longrightarrow
\SheafHom^{gr}_\mathcal{A}(\mathcal{K}, \mathcal{M})
$$
where the left hand side is the tensor product of graded $\mathcal{O}$-modules
defined in Section \ref{section-tensor-product}.
This map is given by the composition map
$$
\SheafHom^m_\mathcal{A}(\mathcal{L}, \mathcal{M}) \otimes_\mathcal{O}
\SheafHom^n_\mathcal{A}(\mathcal{K}, \mathcal{L}) \longrightarrow
\SheafHom^{n + m}_\mathcal{A}(\mathcal{K}, \mathcal{M})
$$
defined by simple composition (locally).
\medskip\noindent
With these definitions we have
$$
\Hom_{\textit{Mod}^{gr}(\mathcal{A})}(\mathcal{L}, \mathcal{M}) =
\Gamma(\mathcal{C}, \SheafHom^{gr}_\mathcal{A}(\mathcal{L}, \mathcal{M}))
$$
as graded $R$-modules compatible with composition.
\section{Sheaves of graded bimodules and tensor-hom adjunction}
\label{section-graded-bimodules}
\noindent
Please skip this section.
\begin{definition}
\label{definition-bimodule}
Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{A}$
and $\mathcal{B}$ be a sheaves of graded algebras on
$(\mathcal{C}, \mathcal{O})$. A
{\it graded $(\mathcal{A}, \mathcal{B})$-bimodule}
is given by a family $\mathcal{M}^n$ indexed by $n \in \mathbf{Z}$
of $\mathcal{O}$-modules endowed with $\mathcal{O}$-bilinear maps
$$
\mathcal{M}^n \times \mathcal{B}^m \to \mathcal{M}^{n + m},\quad
(x, b) \longmapsto xb
$$
and
$$
\mathcal{A}^n \times \mathcal{M}^m \to \mathcal{M}^{n + m},\quad
(a, x) \longmapsto ax
$$
called the multiplication maps with the following properties
\begin{enumerate}
\item multiplication satisfies $a(a'x) = (aa')x$ and
$(xb)b' = x(bb')$,
\item $(ax)b = a(xb)$,
\item the identity section $1$ of $\mathcal{A}^0$ acts as the
identity by multiplication, and
\item the identity section $1$ of
$\mathcal{B}^0$ acts as the identity by multiplication.
\end{enumerate}
We often denote such a structure $\mathcal{M}$.
A {\it homomorphism of graded $(\mathcal{A}, \mathcal{B})$-bimodules}
$f : \mathcal{M} \to \mathcal{N}$ is a family of maps
$f^n : \mathcal{M}^n \to \mathcal{N}^n$
of $\mathcal{O}$-modules compatible with the multiplication maps.
\end{definition}
\noindent
Given a graded $(\mathcal{A}, \mathcal{B})$-bimodule $\mathcal{M}$
and an object $U \in \Ob(\mathcal{C})$ we use the notation
$$
\mathcal{M}(U) =
\Gamma(U, \mathcal{M}) =
\bigoplus\nolimits_{n \in \mathbf{Z}} \mathcal{M}^n(U)
$$
This is a graded $(\mathcal{A}(U), \mathcal{B}(U))$-bimodule.
\medskip\noindent
Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{A}$
and $\mathcal{B}$ be a sheaves of graded algebras on
$(\mathcal{C}, \mathcal{O})$. Let $\mathcal{M}$ be a right
graded $\mathcal{A}$-module and let $\mathcal{N}$ be a
graded $(\mathcal{A}, \mathcal{B})$-bimodule. In this case the
graded tensor product defined in Section \ref{section-tensor-product}
$$
\mathcal{M} \otimes_\mathcal{A} \mathcal{N}
$$
is a right graded $\mathcal{B}$-module with obvious multiplication maps.
This construction defines a functor and a functor of graded categories
$$
\otimes_\mathcal{A} \mathcal{N} :
\textit{Mod}(\mathcal{A})
\longrightarrow
\textit{Mod}(\mathcal{B})
\quad\text{and}\quad
\otimes_\mathcal{A} \mathcal{N} :
\textit{Mod}^{gr}(\mathcal{A})
\longrightarrow
\textit{Mod}^{gr}(\mathcal{B})
$$
by sending homomorphisms of degree $n$ from $\mathcal{M} \to \mathcal{M}'$
to the induced map of degree $n$ from
$\mathcal{M} \otimes_\mathcal{A} \mathcal{N}$ to
$\mathcal{M}' \otimes_\mathcal{A} \mathcal{N}$.
\medskip\noindent
Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{A}$
and $\mathcal{B}$ be a sheaves of graded algebras on
$(\mathcal{C}, \mathcal{O})$. Let $\mathcal{N}$ be a
graded $(\mathcal{A}, \mathcal{B})$-bimodule. Let
$\mathcal{L}$ be a right graded $\mathcal{B}$-module.
In this case the graded internal hom
defined in Section \ref{section-internal-hom-graded}
$$
\SheafHom_\mathcal{B}^{gr}(\mathcal{N}, \mathcal{L})
$$
is a right graded $\mathcal{A}$-module with
multiplication maps\footnote{Our conventions are here
that this does not involve any signs.}
$$
\SheafHom^n_\mathcal{B}(\mathcal{N}, \mathcal{L})
\times \mathcal{A}^m
\longrightarrow
\SheafHom^{n + m}_\mathcal{B}(\mathcal{N}, \mathcal{L})
$$
sending a section $f = (f_{p,q})$ of
$\SheafHom^n_\mathcal{B}(\mathcal{N}, \mathcal{L})$ over $U$
and a section $a$ of $\mathcal{A}^m$ over $U$ to the section
$f a$ if $\SheafHom^{n + m}_\mathcal{B}(\mathcal{N}, \mathcal{L})$ over $U$
defined as the family of maps
$$
\mathcal{N}^{-q - m}|_U \xrightarrow{a \cdot -}
\mathcal{N}^{-q}|_U \xrightarrow{f_{p, q}}
\mathcal{M}^p|_U
$$
We omit the verification that this is well defined. This construction
defines a functor and a functor of graded categories
$$
\SheafHom_\mathcal{B}^{gr}(\mathcal{N}, -) :
\textit{Mod}(\mathcal{B})
\longrightarrow
\textit{Mod}(\mathcal{A})
\quad\text{and}\quad
\SheafHom_\mathcal{B}^{gr}(\mathcal{N}, -) :
\textit{Mod}^{gr}(\mathcal{B})
\longrightarrow
\textit{Mod}^{gr}(\mathcal{A})
$$
by sending homomorphisms of degree $n$ from $\mathcal{L} \to \mathcal{L}'$
to the induced map of degree $n$ from
$\SheafHom_\mathcal{B}^{gr}(\mathcal{N}, \mathcal{L})$ to
$\SheafHom_\mathcal{B}^{gr}(\mathcal{N}, \mathcal{L}')$.
\begin{lemma}
\label{lemma-tensor-hom-adjunction-gr}
Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{A}$
and $\mathcal{B}$ be a sheaves of graded algebras on
$(\mathcal{C}, \mathcal{O})$. Let $\mathcal{M}$ be a right
graded $\mathcal{A}$-module. Let $\mathcal{N}$ be a
graded $(\mathcal{A}, \mathcal{B})$-bimodule. Let $\mathcal{L}$
be a right graded $\mathcal{B}$-module. With conventions as above
we have
$$
\Hom_{\textit{Mod}^{gr}(\mathcal{B})}(
\mathcal{M} \otimes_\mathcal{A} \mathcal{N}, \mathcal{L}) =
\Hom_{\textit{Mod}^{gr}(\mathcal{A})}(
\mathcal{M}, \SheafHom_\mathcal{B}^{gr}(\mathcal{N}, \mathcal{L}))
$$
and
$$
\SheafHom_\mathcal{B}^{gr}(
\mathcal{M} \otimes_\mathcal{A} \mathcal{N}, \mathcal{L}) =
\SheafHom_\mathcal{A}^{gr}(
\mathcal{M}, \SheafHom_\mathcal{B}^{gr}(\mathcal{N}, \mathcal{L}))
$$
functorially in $\mathcal{M}$, $\mathcal{N}$, $\mathcal{L}$.
\end{lemma}
\begin{proof}
Omitted. Hint: This follows by interpreting both sides as
$\mathcal{A}$-bilinear graded maps
$\psi : \mathcal{M} \times \mathcal{N} \to \mathcal{L}$
which are $\mathcal{B}$-linear on the right.
\end{proof}
\noindent
Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{A}$
and $\mathcal{B}$ be a sheaves of graded algebras on
$(\mathcal{C}, \mathcal{O})$.
As a special case of the above, suppose we are given
a homomorphism $\varphi : \mathcal{A} \to \mathcal{B}$
of graded $\mathcal{O}$-algebras. Then we obtain a functor
and a functor of graded categories
$$
\otimes_{\mathcal{A}, \varphi} \mathcal{B} :
\textit{Mod}(\mathcal{A})
\longrightarrow
\textit{Mod}(\mathcal{B})
\quad\text{and}\quad
\otimes_{\mathcal{A}, \varphi} \mathcal{B} :
\textit{Mod}^{gr}(\mathcal{A})
\longrightarrow
\textit{Mod}^{gr}(\mathcal{B})
$$
On the other hand, we have the restriction functors
$$
res_\varphi :
\textit{Mod}(\mathcal{B})
\longrightarrow
\textit{Mod}(\mathcal{A})
\quad\text{and}\quad
res_\varphi :
\textit{Mod}^{gr}(\mathcal{B})
\longrightarrow
\textit{Mod}^{gr}(\mathcal{A})
$$
We can use the lemma above to show these functors are adjoint to
each other (as usual with restriction and base change). Namely,
let us write ${}_\mathcal{A}\mathcal{B}_\mathcal{B}$ for
$\mathcal{B}$ viewed as a graded $(\mathcal{A}, \mathcal{B})$-bimodule.
Then for any right graded $\mathcal{B}$-module $\mathcal{L}$
we have
$$
\SheafHom_\mathcal{B}^{gr}({}_\mathcal{A}\mathcal{B}_\mathcal{B}, \mathcal{L})
= res_\varphi(\mathcal{L})
$$
as right graded $\mathcal{A}$-modules. Thus
Lemma \ref{lemma-tensor-hom-adjunction-gr}
tells us that we have a functorial isomorphism
$$
\Hom_{\textit{Mod}^{gr}(\mathcal{B})}(
\mathcal{M} \otimes_{\mathcal{A}, \varphi} \mathcal{B}, \mathcal{L}) =
\Hom_{\textit{Mod}^{gr}(\mathcal{A})}(
\mathcal{M}, res_\varphi(\mathcal{L}))
$$
We usually drop the dependence on $\varphi$ in this formula if it
is clear from context. In the same manner we obtain
the equality
$$
\SheafHom^{gr}_\mathcal{B}(
\mathcal{M} \otimes_\mathcal{A} \mathcal{B}, \mathcal{L}) =
\SheafHom_\mathcal{A}^{gr}(\mathcal{M}, \mathcal{L})
$$
of graded $\mathcal{O}$-modules.
\section{Pull and push for sheaves of graded modules}
\label{section-functoriality-graded}
\noindent
We advise the reader to skip this section.
\medskip\noindent
Let $(f, f^\sharp) : (\Sh(\mathcal{C}), \mathcal{O}_\mathcal{C})
\to (\Sh(\mathcal{D}), \mathcal{O}_\mathcal{D})$
be a morphism of ringed topoi. Let $\mathcal{A}$ be a
graded $\mathcal{O}_\mathcal{C}$-algebra. Let $\mathcal{B}$ be a
graded $\mathcal{O}_\mathcal{D}$-algebra.
Suppose we are given a map
$$
\varphi : f^{-1}\mathcal{B} \to \mathcal{A}
$$
of graded $f^{-1}\mathcal{O}_\mathcal{D}$-algebras.
By the adjunction of restriction and extension of scalars, this
is the same thing as a map $\varphi : f^*\mathcal{B} \to \mathcal{A}$
of graded $\mathcal{O}_\mathcal{C}$-algebras or equivalently
$\varphi$ can be viewed as a map
$$
\varphi : \mathcal{B} \to f_*\mathcal{A}
$$
of graded $\mathcal{O}_\mathcal{D}$-algebras.
See Remark \ref{remark-functoriality-ga}.
\medskip\noindent
Let us define a functor
$$
f_* :
\textit{Mod}(\mathcal{A})
\longrightarrow
\textit{Mod}(\mathcal{B})
$$
Given a graded $\mathcal{A}$-module $\mathcal{M}$ we define
$f_*\mathcal{M}$ to be the graded $\mathcal{B}$-module
whose degree $n$ term is $f_*\mathcal{M}^n$. As multiplication
we use
$$
f_*\mathcal{M}^n \times \mathcal{B}^m
\xrightarrow{(\text{id}, \varphi^m)}
f_*\mathcal{M}^n \times f_*\mathcal{A}^m
\xrightarrow{f_*\mu_{n, m}}
f_*\mathcal{M}^{n + m}
$$
where $\mu_{n, m} : \mathcal{M}^n \times \mathcal{A}^m
\to \mathcal{M}^{n + m}$ is the multiplication map for $\mathcal{M}$
over $\mathcal{A}$. This uses that $f_*$ commutes with products.
The construction is clearly functorial in
$\mathcal{M}$ and we obtain our functor.
\medskip\noindent
Let us define a functor
$$
f^* :
\textit{Mod}(\mathcal{B})
\longrightarrow
\textit{Mod}(\mathcal{A})
$$
We will define this functor as a composite of functors
$$
\textit{Mod}(\mathcal{B})
\xrightarrow{f^{-1}}
\textit{Mod}(f^{-1}\mathcal{B})
\xrightarrow{ - \otimes_{f^{-1}\mathcal{B}} \mathcal{A}}
\textit{Mod}(\mathcal{A})
$$
First, given a graded $\mathcal{B}$-module $\mathcal{N}$ we define
$f^{-1}\mathcal{N}$ to be the graded $f^{-1}\mathcal{B}$-module
whose degree $n$ term is $f^{-1}\mathcal{N}^n$. As multiplication
we use
$$
f^{-1}\nu_{n, m} :
f^{-1}\mathcal{N}^n \times f^{-1}\mathcal{B}^m
\longrightarrow
f^{-1}\mathcal{N}^{n + m}
$$
where $\nu_{n, m} : \mathcal{N}^n \times \mathcal{B}^m
\to \mathcal{N}^{n + m}$ is the multiplication map for $\mathcal{N}$
over $\mathcal{B}$. This uses that $f^{-1}$ commutes with products.
The construction is clearly functorial in
$\mathcal{N}$ and we obtain our functor $f^{-1}$.
Having said this, we can use the tensor
product discussion in Section \ref{section-graded-bimodules}
to define the functor
$$
- \otimes_{f^{-1}\mathcal{B}} \mathcal{A} :
\textit{Mod}(f^{-1}\mathcal{B})
\longrightarrow
\textit{Mod}(\mathcal{A})
$$
Finally, we set
$$
f^*\mathcal{N} =
f^{-1}\mathcal{N} \otimes_{f^{-1}\mathcal{B}, \varphi} \mathcal{A}
$$
as already foretold above.
\medskip\noindent
The functors $f_*$ and $f^*$ are readily enhanced to give
functors of graded categories
$$
f_* :
\textit{Mod}^{gr}(\mathcal{A})
\longrightarrow
\textit{Mod}^{gr}(\mathcal{B})
\quad\text{and}\quad
f^* :
\textit{Mod}^{gr}(\mathcal{B})
\longrightarrow
\textit{Mod}^{gr}(\mathcal{A})
$$
which do the same thing on underlying objects and are defined
by functoriality of the constructions on homogenous morphisms
of degree $n$.
\begin{lemma}
\label{lemma-adjunction-push-pull-gr}
In the situation above we have
$$
\Hom_{\textit{Mod}^{gr}(\mathcal{B})}(
\mathcal{N}, f_*\mathcal{M}) =
\Hom_{\textit{Mod}^{gr}(\mathcal{A})}(
f^*\mathcal{N}, \mathcal{M})
$$
\end{lemma}
\begin{proof}
Omitted. Hints: First prove that $f^{-1}$ and $f_*$ are adjoint
as functors between $\textit{Mod}(\mathcal{B})$ and
$\textit{Mod}(f^{-1}\mathcal{B})$ using the adjunction between
$f^{-1}$ and $f_*$ on sheaves of abelian groups.
Next, use the adjunction between base change and restriction
given in Section \ref{section-graded-bimodules}.
\end{proof}
\section{Localization and sheaves of graded modules}
\label{section-localize-graded}
\noindent
We advise the reader to skip this section.
\medskip\noindent
Let $(\mathcal{C}, \mathcal{O})$ be a ringed site.
Let $U \in \Ob(\mathcal{C})$ and denote
$$
j :
(\Sh(\mathcal{C}/U), \mathcal{O}_U)
\longrightarrow
(\Sh(\mathcal{C}), \mathcal{O})
$$
the corresponding localization morphism
(Modules on Sites, Section \ref{sites-modules-section-localize}).
Below we will use the following fact: for $\mathcal{O}_U$-modules
$\mathcal{M}_i$, $i = 1, 2$ and a $\mathcal{O}$-module $\mathcal{A}$
there is a canonical map
$$
j_! :
\Hom_{\mathcal{O}_U}(
\mathcal{M}_1 \otimes_{\mathcal{O}_U} \mathcal{A}|_U, \mathcal{M}_2)
\longrightarrow
\Hom_\mathcal{O}(
j_!\mathcal{M}_1 \otimes_\mathcal{O} \mathcal{A}, j_!\mathcal{M}_2)
$$
Namely, we have
$j_!(\mathcal{M}_1 \otimes_{\mathcal{O}_U} \mathcal{A}|_U) =
j_!\mathcal{M}_1 \otimes_\mathcal{O} \mathcal{A}$ by
Modules on Sites, Lemma \ref{sites-modules-lemma-j-shriek-and-tensor}.
\medskip\noindent
Let $\mathcal{A}$ be a graded $\mathcal{O}$-algebra.
We will denote $\mathcal{A}_U$ the restriction of $\mathcal{A}$
to $\mathcal{C}/U$, in other words, we have
$\mathcal{A}_U = j^*\mathcal{A} = j^{-1}\mathcal{A}$.
In Section \ref{section-functoriality-graded}
we have constructed adjoint functors
$$
j_* :
\textit{Mod}^{gr}(\mathcal{A}_U)
\longrightarrow
\textit{Mod}^{gr}(\mathcal{A})
\quad\text{and}\quad
j^* :
\textit{Mod}^{gr}(\mathcal{A})
\longrightarrow
\textit{Mod}^{gr}(\mathcal{A}_U)
$$
with $j^*$ left adjoint to $j_*$. We claim there is in addition an
exact functor
$$
j_! :
\textit{Mod}^{gr}(\mathcal{A}_U)
\longrightarrow
\textit{Mod}^{gr}(\mathcal{A})
$$
left adjoint to $j^*$. Namely, given a graded $\mathcal{A}_U$-module
$\mathcal{M}$ we define $j_!\mathcal{M}$ to be the graded $\mathcal{A}$-module
whose degree $n$ term is $j_!\mathcal{M}^n$. As multiplication map
we use
$$
j_!\mu_{n, m} :
j_!\mathcal{M}^n \times \mathcal{A}^m \to
j_!\mathcal{M}^{n + m}
$$
where $\mu_{m, n} : \mathcal{M}^n \times \mathcal{A}^m \to \mathcal{M}^{n + m}$
is the given multiplication map. Given a homogeneous map
$f : \mathcal{M} \to \mathcal{M}'$ of degree $n$ of graded
$\mathcal{A}_U$-modules, we obtain a homogeneous map
$j_!f : j_!\mathcal{M} \to j_!\mathcal{M}'$ of degree $n$.
Thus we obtain our functor.
\begin{lemma}
\label{lemma-extension-by-zero-graded}
In the situation above we have
$$
\Hom_{\textit{Mod}^{gr}(\mathcal{A})}(
j_!\mathcal{M}, \mathcal{N}) =
\Hom_{\textit{Mod}^{gr}(\mathcal{A}_U)}(
\mathcal{M}, j^*\mathcal{N})
$$
\end{lemma}
\begin{proof}
By the discussion in
Modules on Sites, Section \ref{sites-modules-section-localize}
the functors $j_!$ and $j^*$ on $\mathcal{O}$-modules are adjoint.
Thus if we only look at the $\mathcal{O}$-module structures
we know that
$$
\Hom_{\text{Gr}^{gr}(\textit{Mod}(\mathcal{O}))}(
j_!\mathcal{M}, \mathcal{N}) =
\Hom_{\text{Gr}^{gr}(\textit{Mod}(\mathcal{O}_U))}(
\mathcal{M}, j^*\mathcal{N})
$$
(Recall that $\text{Gr}^{gr}(\textit{Mod}(\mathcal{O}))$ denotes
the graded category of graded $\mathcal{O}$-modules.)
Then one has to check that these identifications map the
$\mathcal{A}$-module maps on the left hand side to the
$\mathcal{A}_U$-module maps on the right hand side.
To check this, given $\mathcal{O}_U$-linear maps
$f^n : \mathcal{M}^n \to j^*\mathcal{N}^{n + d}$
corresponding to $\mathcal{O}$-linear maps
$g^n : j_!\mathcal{M}^n \to \mathcal{N}^{n + d}$
it suffices to show that
$$
\xymatrix{
\mathcal{M}^n \otimes_{\mathcal{O}_U} \mathcal{A}_U^m
\ar[r]_{f^n \otimes 1} \ar[d] &
j^*\mathcal{N}^{n + d} \otimes_{\mathcal{O}_U} \mathcal{A}_U^m \ar[d] \\
\mathcal{M}^{n + m} \ar[r]^{f^{n + m}} &
j^*\mathcal{N}^{n + m + d}
}
$$
commutes if and only if
$$
\xymatrix{
j_!\mathcal{M}^n \otimes_\mathcal{O} \mathcal{A}^m
\ar[r]_{g^n \otimes 1} \ar[d] &
\mathcal{N}^{n + d} \otimes_\mathcal{O} \mathcal{A}_U^m \ar[d] \\
j_!\mathcal{M}^{n + m} \ar[r]^{g^{n + m}} &
\mathcal{N}^{n + m + d}
}
$$
commutes. However, we know that
\begin{align*}
\Hom_{\mathcal{O}_U}(\mathcal{M}^n \otimes_{\mathcal{O}_U} \mathcal{A}_U^m,
j^*\mathcal{N}^{n + d + m})
& =
\Hom_\mathcal{O}(j_!(\mathcal{M}^n \otimes_{\mathcal{O}_U} \mathcal{A}_U^m),
\mathcal{N}^{n + d + m}) \\
& =
\Hom_\mathcal{O}(j_!\mathcal{M}^n \otimes_\mathcal{O} \mathcal{A}^m,
\mathcal{N}^{n + d + m})
\end{align*}
by the already used
Modules on Sites, Lemma \ref{sites-modules-lemma-j-shriek-and-tensor}.
We omit the verification that shows that the obstruction to the
commutativity of the first diagram in the first group maps
to the obstruction to the commutativity of the second diagram
in the last group.
\end{proof}
\begin{lemma}
\label{lemma-tensor-with-extension-by-zero}
In the situation above, let $\mathcal{M}$ be a right graded
$\mathcal{A}_U$-module and let $\mathcal{N}$ be a left graded
$\mathcal{A}$-module. Then
$$
j_!\mathcal{M} \otimes_\mathcal{A} \mathcal{N} =
j_!(\mathcal{M} \otimes_{\mathcal{A}_U} \mathcal{N}|_U)
$$
as graded $\mathcal{O}$-modules functorially in $\mathcal{M}$
and $\mathcal{N}$.
\end{lemma}
\begin{proof}
Recall that the degree $n$ component of
$j_!\mathcal{M} \otimes_\mathcal{A} \mathcal{N}$ is the cokernel of
the canonical map
$$
\bigoplus\nolimits_{r + s + t = n}
j_!\mathcal{M}^r \otimes_\mathcal{O}
\mathcal{A}^s \otimes_\mathcal{O}
\mathcal{N}^t
\longrightarrow
\bigoplus\nolimits_{p + q = n}
j_!\mathcal{M}^p \otimes_\mathcal{O} \mathcal{N}^q
$$
See Section \ref{section-tensor-product}.
By Modules on Sites, Lemma \ref{sites-modules-lemma-j-shriek-and-tensor}
this is the same thing as the cokernel of
$$
\bigoplus\nolimits_{r + s + t = n}
j_!(\mathcal{M}^r \otimes_{\mathcal{O}_U}
\mathcal{A}^s|_U \otimes_{\mathcal{O}_U}
\mathcal{N}^t|_U)
\longrightarrow
\bigoplus\nolimits_{p + q = n}
j_!(\mathcal{M}^p \otimes_{\mathcal{O}_U} \mathcal{N}^q|_U)
$$
and we win. An alternative proof would be to redo the Yoneda
argument given in the proof of the lemma cited above.
\end{proof}
\section{Shift functors on sheaves of graded modules}
\label{section-shift}
\noindent
We urge the reader to skip this section. It turns out that sheaves
of graded modules over a graded algebra are an example of the phenomenon
discussed in
Differential Graded Algebra, Remark \ref{dga-remark-graded-shift-functors}.
\medskip\noindent