forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
perfect.tex
10850 lines (9953 loc) · 406 KB
/
perfect.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Derived Categories of Schemes}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this chapter we discuss derived categories of modules on schemes.
Most of the material discussed here can be found in
\cite{TT}, \cite{Bokstedt-Neeman}, \cite{BvdB}, and \cite{LN}.
Of course there are many other references.
\section{Conventions}
\label{section-conventions}
\noindent
If $\mathcal{A}$ is an abelian category and $M$ is an object
of $\mathcal{A}$ then we also denote $M$ the object of $K(\mathcal{A})$
and/or $D(\mathcal{A})$ corresponding to the complex which has
$M$ in degree $0$ and is zero in all other degrees.
\medskip\noindent
If we have a ring $A$, then $K(A)$ denotes the homotopy category
of complexes of $A$-modules and $D(A)$ the associated derived category.
Similarly, if we have a ringed space $(X, \mathcal{O}_X)$ the symbol
$K(\mathcal{O}_X)$ denotes the homotopy category of complexes of
$\mathcal{O}_X$-modules and $D(\mathcal{O}_X)$ the associated derived
category.
\section{Derived category of quasi-coherent modules}
\label{section-derived-quasi-coherent}
\noindent
In this section we discuss the relationship between quasi-coherent
modules and all modules on a scheme $X$. A reference is
\cite[Appendix B]{TT}. By the discussion in
Schemes, Section \ref{schemes-section-quasi-coherent}
the embedding
$\QCoh(\mathcal{O}_X) \subset \textit{Mod}(\mathcal{O}_X)$
exhibits $\QCoh(\mathcal{O}_X)$ as a weak Serre subcategory of
the category of $\mathcal{O}_X$-modules. Denote
$$
D_\QCoh(\mathcal{O}_X) \subset D(\mathcal{O}_X)
$$
the subcategory of complexes whose cohomology sheaves are quasi-coherent, see
Derived Categories, Section \ref{derived-section-triangulated-sub}.
Thus we obtain a canonical functor
\begin{equation}
\label{equation-compare}
D(\QCoh(\mathcal{O}_X))
\longrightarrow
D_\QCoh(\mathcal{O}_X)
\end{equation}
see Derived Categories, Equation (\ref{derived-equation-compare}).
\begin{lemma}
\label{lemma-quasi-coherence-direct-sums}
Let $X$ be a scheme. Then $D_\QCoh(\mathcal{O}_X)$
has direct sums.
\end{lemma}
\begin{proof}
By Injectives, Lemma \ref{injectives-lemma-derived-products}
the derived category $D(\mathcal{O}_X)$ has direct sums and
they are computed by taking termwise direct sums of any representatives.
Thus it is clear that the cohomology sheaf of a direct sum is the
direct sum of the cohomology sheaves as taking direct sums is
an exact functor (in any Grothendieck abelian category). The lemma
follows as the direct sum of quasi-coherent sheaves is quasi-coherent, see
Schemes, Section \ref{schemes-section-quasi-coherent}.
\end{proof}
\noindent
We will need some information on derived limits. We warn the reader
that in the lemma below the derived limit will typically not be
an object of $D_\QCoh$.
\begin{lemma}
\label{lemma-Rlim-quasi-coherent}
Let $X$ be a scheme. Let $(K_n)$ be an inverse system of
$D_\QCoh(\mathcal{O}_X)$ with derived limit
$K = R\lim K_n$ in $D(\mathcal{O}_X)$. Assume $H^q(K_{n + 1}) \to H^q(K_n)$
is surjective for all $q \in \mathbf{Z}$ and $n \geq 1$.
Then
\begin{enumerate}
\item $H^q(K) = \lim H^q(K_n)$,
\item $R\lim H^q(K_n) = \lim H^q(K_n)$, and
\item for every affine open $U \subset X$ we have
$H^p(U, \lim H^q(K_n)) = 0$ for $p > 0$.
\end{enumerate}
\end{lemma}
\begin{proof}
Let $\mathcal{B}$ be the set of affine opens of $X$.
Since $H^q(K_n)$ is quasi-coherent we have $H^p(U, H^q(K_n)) = 0$
for $U \in \mathcal{B}$ by Cohomology of Schemes, Lemma
\ref{coherent-lemma-quasi-coherent-affine-cohomology-zero}.
Moreover, the maps $H^0(U, H^q(K_{n + 1})) \to H^0(U, H^q(K_n))$
are surjective for $U \in \mathcal{B}$ by
Schemes, Lemma \ref{schemes-lemma-equivalence-quasi-coherent}.
Part (1) follows from Cohomology, Lemma
\ref{cohomology-lemma-derived-limit-suitable-system}
whose conditions we have just verified.
Parts (2) and (3) follow from
Cohomology, Lemma \ref{cohomology-lemma-inverse-limit-is-derived-limit}.
\end{proof}
\noindent
The following lemma will help us to ``compute'' a right derived functor
on an object of $D_\QCoh(\mathcal{O}_X)$.
\begin{lemma}
\label{lemma-nice-K-injective}
Let $X$ be a scheme. Let $E$ be an object of
$D_\QCoh(\mathcal{O}_X)$. Then the canonical map
$E \to R\lim \tau_{\geq -n}E$ is an isomorphism\footnote{In particular,
$E$ has a K-injective representative as in
Cohomology, Lemma \ref{cohomology-lemma-K-injective}.}.
\end{lemma}
\begin{proof}
Denote $\mathcal{H}^i = H^i(E)$ the $i$th cohomology sheaf of $E$.
Let $\mathcal{B}$ be the set of affine open subsets of $X$. Then
$H^p(U, \mathcal{H}^i) = 0$ for all $p > 0$, all $i \in \mathbf{Z}$,
and all $U \in \mathcal{B}$, see
Cohomology of Schemes, Lemma
\ref{coherent-lemma-quasi-coherent-affine-cohomology-zero}.
Thus the lemma follows from
Cohomology, Lemma \ref{cohomology-lemma-is-limit-dimension}.
\end{proof}
\begin{lemma}
\label{lemma-application-nice-K-injective}
Let $X$ be a scheme. Let $F : \textit{Mod}(\mathcal{O}_X) \to \textit{Ab}$
be an additive functor and $N \geq 0$ an integer. Assume that
\begin{enumerate}
\item $F$ commutes with countable direct products,
\item $R^pF(\mathcal{F}) = 0$ for all $p \geq N$ and $\mathcal{F}$
quasi-coherent.
\end{enumerate}
Then for $E \in D_\QCoh(\mathcal{O}_X)$
\begin{enumerate}
\item $H^i(RF(\tau_{\leq a}E)) \to H^i(RF(E))$ is an isomorphism
for $i \leq a$,
\item $H^i(RF(E)) \to H^i(RF(\tau_{\geq b - N + 1}E))$ is an isomorphism
for $i \geq b$,
\item if $H^i(E) = 0$ for $i \not \in [a, b]$ for some
$-\infty \leq a \leq b \leq \infty$, then $H^i(RF(E)) = 0$
for $i \not \in [a, b + N - 1]$.
\end{enumerate}
\end{lemma}
\begin{proof}
Statement (1) is
Derived Categories, Lemma \ref{derived-lemma-negative-vanishing}.
\medskip\noindent
Proof of statement (2). Write $E_n = \tau_{\geq -n}E$. We have
$E = R\lim E_n$, see Lemma \ref{lemma-nice-K-injective}. Thus
$RF(E) = R\lim RF(E_n)$ in $D(\textit{Ab})$ by Injectives, Lemma
\ref{injectives-lemma-RF-commutes-with-Rlim}. Thus for every $i \in \mathbf{Z}$
we have a short exact sequence
$$
0 \to R^1\lim H^{i - 1}(RF(E_n)) \to H^i(RF(E)) \to \lim H^i(RF(E_n)) \to 0
$$
see More on Algebra, Remark
\ref{more-algebra-remark-compare-derived-limit}.
To prove (2) we will show that the term on the left is zero
and that the term on the right equals $H^i(RF(E_{-b + N - 1})$
for any $b$ with $i \geq b$.
\medskip\noindent
For every $n$ we have a distinguished triangle
$$
H^{-n}(E)[n] \to E_n \to E_{n - 1} \to H^{-n}(E)[n + 1]
$$
(Derived Categories, Remark
\ref{derived-remark-truncation-distinguished-triangle})
in $D(\mathcal{O}_X)$. Since $H^{-n}(E)$ is quasi-coherent we have
$$
H^i(RF(H^{-n}(E)[n])) = R^{i + n}F(H^{-n}(E)) = 0
$$
for $i + n \geq N$ and
$$
H^i(RF(H^{-n}(E)[n + 1])) = R^{i + n + 1}F(H^{-n}(E)) = 0
$$
for $i + n + 1 \geq N$. We conclude that
$$
H^i(RF(E_n)) \to H^i(RF(E_{n - 1}))
$$
is an isomorphism for $n \geq N - i$. Thus the systems $H^i(RF(E_n))$ all
satisfy the ML condition and the $R^1\lim$ term in our short exact
sequence is zero (see discussion in
More on Algebra, Section \ref{more-algebra-section-Rlim}).
Moreover, the system $H^i(RF(E_n))$ is constant starting
with $n = N - i - 1$ as desired.
\medskip\noindent
Proof of (3). Under the assumption on $E$ we have
$\tau_{\leq a - 1}E = 0$ and we get the vanishing
of $H^i(RF(E))$ for $i \leq a - 1$ from (1).
Similarly, we have $\tau_{\geq b + 1}E = 0$ and hence
we get the vanishing of $H^i(RF(E))$ for $i \geq b + n$ from
part (2).
\end{proof}
\noindent
The following lemma is the key ingredient to many of the
results in this chapter.
\begin{lemma}
\label{lemma-affine-compare-bounded}
Let $X = \Spec(A)$ be an affine scheme. All the functors in the diagram
$$
\xymatrix{
D(\QCoh(\mathcal{O}_X)) \ar[rr]_{(\ref{equation-compare})}
& &
D_\QCoh(\mathcal{O}_X) \ar[ld]^{R\Gamma(X, -)} \\
& D(A) \ar[lu]^{\widetilde{\ \ }}
}
$$
are equivalences of triangulated categories. Moreover, for $E$ in
$D_\QCoh(\mathcal{O}_X)$ we have $H^0(X, E) = H^0(X, H^0(E))$.
\end{lemma}
\begin{proof}
The functor $R\Gamma(X, -)$ gives a functor
$D(\mathcal{O}_X) \to D(A)$ and hence by restriction a functor
\begin{equation}
\label{equation-back}
R\Gamma(X, -) : D_\QCoh(\mathcal{O}_X) \longrightarrow D(A).
\end{equation}
We will show this functor is quasi-inverse to (\ref{equation-compare})
via the equivalence between quasi-coherent modules on $X$ and
the category of $A$-modules.
\medskip\noindent
Elucidation. Denote $(Y, \mathcal{O}_Y)$ the one point space with sheaf
of rings given by $A$. Denote
$\pi : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$
the obvious morphism of ringed spaces.
Then $R\Gamma(X, -)$ can be identified with $R\pi_*$ and the functor
(\ref{equation-compare}) via the equivalence
$\textit{Mod}(\mathcal{O}_Y) = \text{Mod}_A = \QCoh(\mathcal{O}_X)$
can be identified with $L\pi^* = \pi^* = \widetilde{\ }$ (see
Modules, Lemma \ref{modules-lemma-construct-quasi-coherent-sheaves} and
Schemes, Lemmas \ref{schemes-lemma-compare-constructions} and
\ref{schemes-lemma-equivalence-quasi-coherent}). Thus the functors
$$
\xymatrix{
D(A) \ar@<1ex>[r] & D(\mathcal{O}_X) \ar@<1ex>[l]
}
$$
are adjoint (by Cohomology, Lemma \ref{cohomology-lemma-adjoint}). In
particular we obtain canonical adjunction mappings
$$
a : \widetilde{R\Gamma(X, E)} \longrightarrow E
$$
for $E$ in $D(\mathcal{O}_X)$ and
$$
b : M^\bullet \longrightarrow R\Gamma(X, \widetilde{M^\bullet})
$$
for $M^\bullet$ a complex of $A$-modules.
\medskip\noindent
Let $E$ be an object of $D_\QCoh(\mathcal{O}_X)$. We may apply
Lemma \ref{lemma-application-nice-K-injective}
to the functor $F(-) = \Gamma(X, -)$
with $N = 1$ by Cohomology of Schemes, Lemma
\ref{coherent-lemma-quasi-coherent-affine-cohomology-zero}.
Hence
$$
H^0(R\Gamma(X, E)) = H^0(R\Gamma(X, \tau_{\geq 0}E)) = \Gamma(X, H^0(E))
$$
(the last equality by definition of the canonical truncation).
Using this we will show that the adjunction mappings $a$ and $b$
induce isomorphisms $H^0(a)$ and $H^0(b)$. Thus $a$ and $b$
are quasi-isomorphisms (as the statement is invariant under shifts)
and the lemma is proved.
\medskip\noindent
In both cases we use that $\widetilde{\ }$ is an exact functor
(Schemes, Lemma \ref{schemes-lemma-spec-sheaves}). Namely, this
implies that
$$
H^0\left(\widetilde{R\Gamma(X, E)}\right) =
\widetilde{H^0(R\Gamma(X, E))} =
\widetilde{\Gamma(X, H^0(E))}
$$
which is equal to $H^0(E)$ because $H^0(E)$ is quasi-coherent. Thus
$H^0(a)$ is an isomorphism. For the other direction we have
$$
H^0(R\Gamma(X, \widetilde{M^\bullet})) =
\Gamma(X, H^0(\widetilde{M^\bullet})) =
\Gamma(X, \widetilde{H^0(M^\bullet)}) =
H^0(M^\bullet)
$$
which proves that $H^0(b)$ is an isomorphism.
\end{proof}
\begin{lemma}
\label{lemma-affine-K-flat}
Let $X = \Spec(A)$ be an affine scheme. If $K^\bullet$ is a K-flat
complex of $A$-modules, then $\widetilde{K^\bullet}$ is a K-flat
complex of $\mathcal{O}_X$-modules.
\end{lemma}
\begin{proof}
By More on Algebra, Lemma \ref{more-algebra-lemma-base-change-K-flat}
we see that $K^\bullet \otimes_A A_\mathfrak p$ is a K-flat complex
of $A_\mathfrak p$-modules for every $\mathfrak p \in \Spec(A)$.
Hence we conclude from
Cohomology, Lemma \ref{cohomology-lemma-check-K-flat-stalks}
(and
Schemes, Lemma \ref{schemes-lemma-spec-sheaves})
that $\widetilde{K^\bullet}$ is K-flat.
\end{proof}
\begin{lemma}
\label{lemma-quasi-coherence-pushforward}
If $f : X \to Y$ is a morphism of affine schemes given by the ring map
$A \to B$, then the diagram
$$
\xymatrix{
D(B) \ar[d] \ar[r] & D_\QCoh(\mathcal{O}_X) \ar[d]^{Rf_*} \\
D(A) \ar[r] & D_\QCoh(\mathcal{O}_Y)
}
$$
commutes.
\end{lemma}
\begin{proof}
Follows from Lemma \ref{lemma-affine-compare-bounded}
using that $R\Gamma(Y, Rf_*K) = R\Gamma(X, K)$ by
Cohomology, Lemma \ref{cohomology-lemma-Leray-unbounded}.
\end{proof}
\begin{lemma}
\label{lemma-quasi-coherence-pullback}
Let $f : Y \to X$ be a morphism of schemes.
\begin{enumerate}
\item The functor $Lf^*$ sends $D_\QCoh(\mathcal{O}_X)$
into $D_\QCoh(\mathcal{O}_Y)$.
\item If $X$ and $Y$ are affine and $f$ is given by the ring map
$A \to B$, then the diagram
$$
\xymatrix{
D(B) \ar[r] & D_\QCoh(\mathcal{O}_Y) \\
D(A) \ar[r] \ar[u]^{- \otimes_A^\mathbf{L} B} &
D_\QCoh(\mathcal{O}_X) \ar[u]_{Lf^*}
}
$$
commutes.
\end{enumerate}
\end{lemma}
\begin{proof}
We first prove the diagram
$$
\xymatrix{
D(B) \ar[r] & D(\mathcal{O}_Y) \\
D(A) \ar[r] \ar[u]^{- \otimes_A^\mathbf{L} B} &
D(\mathcal{O}_X) \ar[u]_{Lf^*}
}
$$
commutes. This is clear from Lemma \ref{lemma-affine-K-flat} and
the constructions of the functors in question. To see (1) let
$E$ be an object of $D_\QCoh(\mathcal{O}_X)$. To see that
$Lf^*E$ has quasi-coherent cohomology sheaves we may work locally on $X$.
Note that $Lf^*$ is compatible with restricting to open subschemes.
Hence we can assume that $f$ is a morphism of affine schemes as in (2).
Then we can apply Lemma \ref{lemma-affine-compare-bounded} to see that
$E$ comes from a complex of $A$-modules. By the commutativity of the first
diagram of the proof the same holds for $Lf^*E$ and we conclude (1) is true.
\end{proof}
\begin{lemma}
\label{lemma-quasi-coherence-tensor-product}
Let $X$ be a scheme.
\begin{enumerate}
\item For objects $K, L$ of $D_\QCoh(\mathcal{O}_X)$
the derived tensor product $K \otimes^\mathbf{L}_{\mathcal{O}_X} L$ is in
$D_\QCoh(\mathcal{O}_X)$.
\item If $X = \Spec(A)$ is affine then
$$
\widetilde{M^\bullet} \otimes_{\mathcal{O}_X}^\mathbf{L} \widetilde{K^\bullet}
=
\widetilde{M^\bullet \otimes_A^\mathbf{L} K^\bullet}
$$
for any pair of complexes of $A$-modules $K^\bullet$, $M^\bullet$.
\end{enumerate}
\end{lemma}
\begin{proof}
The equality of (2) follows immediately from Lemma \ref{lemma-affine-K-flat}
and the construction of the derived tensor product.
To see (1) let $K, L$ be objects of $D_\QCoh(\mathcal{O}_X)$.
To check that $K \otimes^\mathbf{L} L$ is in
$D_\QCoh(\mathcal{O}_X)$ we may work locally on $X$, hence
we may assume $X = \Spec(A)$ is affine. By
Lemma \ref{lemma-affine-compare-bounded} we may represent
$K$ and $L$ by complexes of $A$-modules. Then part (2) implies
the result.
\end{proof}
\section{Total direct image}
\label{section-total-direct-image}
\noindent
The following lemma is the analogue of
Cohomology of Schemes, Lemma
\ref{coherent-lemma-quasi-coherence-higher-direct-images}.
\begin{lemma}
\label{lemma-quasi-coherence-direct-image}
Let $f : X \to S$ be a morphism of schemes.
Assume that $f$ is quasi-separated and quasi-compact.
\begin{enumerate}
\item The functor $Rf_*$ sends $D_\QCoh(\mathcal{O}_X)$
into $D_\QCoh(\mathcal{O}_S)$.
\item If $S$ is quasi-compact, there exists an integer $N = N(X, S, f)$
such that for an object $E$ of $D_\QCoh(\mathcal{O}_X)$
with $H^m(E) = 0$ for $m > 0$ we have
$H^m(Rf_*E) = 0$ for $m \geq N$.
\item In fact, if $S$ is quasi-compact we can find $N = N(X, S, f)$
such that for every morphism of schemes $S' \to S$
the same conclusion holds for the functor $R(f')_*$
where $f' : X' \to S'$ is the base change of $f$.
\end{enumerate}
\end{lemma}
\begin{proof}
Let $E$ be an object of $D_\QCoh(\mathcal{O}_X)$. To prove (1) we have to
show that $Rf_*E$ has quasi-coherent cohomology sheaves. The question is local
on $S$, hence we may assume $S$ is quasi-compact. Pick $N = N(X, S, f)$ as in
Cohomology of Schemes, Lemma
\ref{coherent-lemma-quasi-coherence-higher-direct-images}.
Thus $R^pf_*\mathcal{F} = 0$ for all quasi-coherent $\mathcal{O}_X$-modules
$\mathcal{F}$ and all $p \geq N$ and the same remains true after base change.
\medskip\noindent
First, assume $E$ is bounded below. We will show (1) and (2) and (3) hold
for such $E$ with our choice of $N$. In this case we can for example use the
spectral sequence
$$
R^pf_*H^q(E) \Rightarrow R^{p + q}f_*E
$$
(Derived Categories, Lemma \ref{derived-lemma-two-ss-complex-functor}),
the quasi-coherence of $R^pf_*H^q(E)$, and the vanishing of $R^pf_*H^q(E)$
for $p \geq N$ to see that (1), (2), and (3) hold in this case.
\medskip\noindent
Next we prove (2) and (3). Say $H^m(E) = 0$ for $m > 0$.
Let $U \subset S$ be affine open. By Cohomology of Schemes, Lemma
\ref{coherent-lemma-quasi-coherence-higher-direct-images-application}
and our choice of $N$
we have $H^p(f^{-1}(U), \mathcal{F}) = 0$ for $p \geq N$
and any quasi-coherent $\mathcal{O}_X$-module $\mathcal{F}$.
Hence we may apply Lemma \ref{lemma-application-nice-K-injective}
to the functor $\Gamma(f^{-1}(U), -)$ to see that
$$
R\Gamma(U, Rf_*E) = R\Gamma(f^{-1}(U), E)
$$
has vanishing cohomology in degrees $\geq N$. Since this holds for
all $U \subset S$ affine open we conclude that $H^m(Rf_*E) = 0$
for $m \geq N$.
\medskip\noindent
Next, we prove (1) in the general case. Recall that there is a
distinguished triangle
$$
\tau_{\leq -n - 1}E \to E \to \tau_{\geq -n}E \to
(\tau_{\leq -n - 1}E)[1]
$$
in $D(\mathcal{O}_X)$, see Derived Categories, Remark
\ref{derived-remark-truncation-distinguished-triangle}.
By (2) we see that $Rf_*\tau_{\leq -n - 1}E$
has vanishing cohomology sheaves in degrees $\geq -n + N$.
Thus, given an integer $q$ we see that $R^qf_*E$ is equal
to $R^qf_*\tau_{\geq -n}E$ for some $n$ and the result
above applies.
\end{proof}
\begin{lemma}
\label{lemma-acyclicity-lemma}
Let $f : X \to S$ be a quasi-separated and quasi-compact morphism
of schemes. Let $\mathcal{F}^\bullet$ be a complex of quasi-coherent
$\mathcal{O}_X$-modules each of which is right acyclic for $f_*$.
Then $f_*\mathcal{F}^\bullet$ represents $Rf_*\mathcal{F}^\bullet$
in $D(\mathcal{O}_S)$.
\end{lemma}
\begin{proof}
There is always a canonical map
$f_*\mathcal{F}^\bullet \to Rf_*\mathcal{F}^\bullet$.
Our task is to show that this is an isomorphism on cohomology sheaves.
As the statement is invariant under shifts it suffices to show that
$H^0(f_*(\mathcal{F}^\bullet)) \to R^0f_*\mathcal{F}^\bullet$
is an isomorphism. The statement is local on $S$ hence we
may assume $S$ affine. By
Lemma \ref{lemma-quasi-coherence-direct-image}
we have $R^0f_*\mathcal{F}^\bullet = R^0f_*\tau_{\geq -n}\mathcal{F}^\bullet$
for all sufficiently large $n$. Thus we may assume $\mathcal{F}^\bullet$
bounded below. As each $\mathcal{F}^n$ is right $f_*$-acyclic by
assumption we see that $f_*\mathcal{F}^\bullet \to Rf_*\mathcal{F}^\bullet$
is a quasi-isomorphism by Leray's acyclicity lemma (Derived Categories, Lemma
\ref{derived-lemma-leray-acyclicity}).
\end{proof}
\begin{lemma}
\label{lemma-acyclicity-lemma-global}
Let $X$ be a quasi-separated and quasi-compact scheme.
Let $\mathcal{F}^\bullet$ be a complex of quasi-coherent
$\mathcal{O}_X$-modules each of which is right acyclic for $\Gamma(X, -)$.
Then $\Gamma(X, \mathcal{F}^\bullet)$ represents
$R\Gamma(X, \mathcal{F}^\bullet)$ in $D(\Gamma(X, \mathcal{O}_X)$.
\end{lemma}
\begin{proof}
Apply Lemma \ref{lemma-acyclicity-lemma} to the canonical morphism
$X \to \Spec(\Gamma(X, \mathcal{O}_X))$. Some details omitted.
\end{proof}
\begin{lemma}
\label{lemma-spectral-sequence}
Let $X$ be a quasi-separated and quasi-compact scheme. For any object
$K$ of $D_\QCoh(\mathcal{O}_X)$ the spectral sequence
$$
E_2^{i, j} = H^i(X, H^j(K)) \Rightarrow H^{i + j}(X, K)
$$
of Cohomology, Example \ref{cohomology-example-spectral-sequence}
is bounded and converges.
\end{lemma}
\begin{proof}
By the construction of the spectral sequence via
Cohomology, Lemma \ref{cohomology-lemma-spectral-sequence-filtered-object}
using the filtration given by $\tau_{\leq -p}K$, we see that
suffices to show that given $n \in \mathbf{Z}$ we have
$$
H^n(X, \tau_{\leq -p}K) = 0 \text{ for } p \gg 0
$$
and
$$
H^n(X, K) = H^n(X, \tau_{\leq -p}K) \text{ for } p \ll 0
$$
The first follows from Lemma \ref{lemma-application-nice-K-injective}
applied with $F = \Gamma(X, -)$ and the bound in
Cohomology of Schemes, Lemma
\ref{coherent-lemma-quasi-coherence-higher-direct-images}.
The second holds whenever
$-p \leq n$ for any ringed space $(X, \mathcal{O}_X)$ and any
$K \in D(\mathcal{O}_X)$.
\end{proof}
\begin{lemma}
\label{lemma-quasi-coherence-pushforward-direct-sums}
Let $f : X \to S$ be a quasi-separated and quasi-compact morphism of
schemes. Then
$Rf_* : D_\QCoh(\mathcal{O}_X) \to D_\QCoh(\mathcal{O}_S)$
commutes with direct sums.
\end{lemma}
\begin{proof}
Let $E_i$ be a family of objects of $D_\QCoh(\mathcal{O}_X)$
and set $E = \bigoplus E_i$. We want to show that the map
$$
\bigoplus Rf_*E_i \longrightarrow Rf_*E
$$
is an isomorphism. We will show it induces an isomorphism on
cohomology sheaves in degree $0$ which will imply the lemma.
Choose an integer $N$ as in Lemma \ref{lemma-quasi-coherence-direct-image}.
Then $R^0f_*E = R^0f_*\tau_{\geq -N}E$ and
$R^0f_*E_i = R^0f_*\tau_{\geq -N}E_i$ by the lemma cited. Observe that
$\tau_{\geq -N}E = \bigoplus \tau_{\geq -N}E_i$.
Thus we may assume all of the $E_i$ have vanishing cohomology
sheaves in degrees $< -N$. Next we use the spectral sequences
$$
R^pf_*H^q(E) \Rightarrow R^{p + q}f_*E
\quad\text{and}\quad
R^pf_*H^q(E_i) \Rightarrow R^{p + q}f_*E_i
$$
(Derived Categories, Lemma \ref{derived-lemma-two-ss-complex-functor})
to reduce to the case of a direct sum of quasi-coherent sheaves.
This case is handled by
Cohomology of Schemes, Lemma \ref{coherent-lemma-colimit-cohomology}.
\end{proof}
\section{Affine morphisms}
\label{section-affine-morphisms}
\noindent
In this section we collect some information about pushforward
along an affine morphism of schemes.
\begin{lemma}
\label{lemma-pushforward-affine-morphism}
Let $f : X \to S$ be an affine morphism of schemes. Let $\mathcal{F}^\bullet$
be a complex of quasi-coherent $\mathcal{O}_X$-modules. Then
$f_*\mathcal{F}^\bullet = Rf_*\mathcal{F}^\bullet$.
\end{lemma}
\begin{proof}
Combine Lemma \ref{lemma-acyclicity-lemma} with
Cohomology of Schemes, Lemma \ref{coherent-lemma-relative-affine-vanishing}.
An alternative proof is to work affine locally on $S$
and use Lemma \ref{lemma-quasi-coherence-pushforward}.
\end{proof}
\begin{lemma}
\label{lemma-affine-morphism}
Let $f : X \to S$ be an affine morphism of schemes.
Then
$Rf_* : D_\QCoh(\mathcal{O}_X) \to D_\QCoh(\mathcal{O}_S)$
reflects isomorphisms.
\end{lemma}
\begin{proof}
The statement means that a morphism $\alpha : E \to F$ of
$D_\QCoh(\mathcal{O}_X)$ is an isomorphism if
$Rf_*\alpha$ is an isomorphism. We may check this on cohomology sheaves.
In particular, the question is local on $S$. Hence we may assume $S$
and therefore $X$ is affine. In this case the statement is clear from
the description of the derived categories
$D_\QCoh(\mathcal{O}_X)$ and
$D_\QCoh(\mathcal{O}_S)$ given in
Lemma \ref{lemma-affine-compare-bounded}.
Some details omitted.
\end{proof}
\begin{lemma}
\label{lemma-affine-morphism-pull-push}
Let $f : X \to S$ be an affine morphism of schemes.
For $E$ in $D_\QCoh(\mathcal{O}_S)$ we have
$Rf_* Lf^* E = E \otimes^\mathbf{L}_{\mathcal{O}_S} f_*\mathcal{O}_X$.
\end{lemma}
\begin{proof}
Since $f$ is affine the map $f_*\mathcal{O}_X \to Rf_*\mathcal{O}_X$
is an isomorphism
(Cohomology of Schemes, Lemma \ref{coherent-lemma-relative-affine-vanishing}).
There is a canonical map $E \otimes^\mathbf{L} f_*\mathcal{O}_X =
E \otimes^\mathbf{L} Rf_*\mathcal{O}_X \to Rf_* Lf^* E$
adjoint to the map
$$
Lf^*(E \otimes^\mathbf{L} Rf_*\mathcal{O}_X) =
Lf^*E \otimes^\mathbf{L} Lf^*Rf_*\mathcal{O}_X \longrightarrow
Lf^* E \otimes^\mathbf{L} \mathcal{O}_X = Lf^* E
$$
coming from $1 : Lf^*E \to Lf^*E$ and the canonical map
$Lf^*Rf_*\mathcal{O}_X \to \mathcal{O}_X$. To check the map so constructed
is an isomorphism we may work locally on $S$. Hence we may assume
$S$ and therefore $X$ is affine. In this case the statement is clear from
the description of the derived categories
$D_\QCoh(\mathcal{O}_X)$ and
$D_\QCoh(\mathcal{O}_S)$ and the functor $Lf^*$ given in
Lemmas \ref{lemma-affine-compare-bounded} and
\ref{lemma-quasi-coherence-pullback}.
Some details omitted.
\end{proof}
\noindent
Let $Y$ be a scheme. Let $\mathcal{A}$ be a sheaf of $\mathcal{O}_Y$-algebras.
We will denote $D_\QCoh(\mathcal{A})$ the inverse image of
$D_\QCoh(\mathcal{O}_X)$ under the restriction functor
$D(\mathcal{A}) \to D(\mathcal{O}_X)$. In other words, $K \in D(\mathcal{A})$
is in $D_\QCoh(\mathcal{A})$ if and only if its cohomology sheaves are
quasi-coherent as $\mathcal{O}_X$-modules. If $\mathcal{A}$ is quasi-coherent
itself this is the same as asking the cohomology sheaves to be quasi-coherent
as $\mathcal{A}$-modules, see
Morphisms, Lemma \ref{morphisms-lemma-affine-equivalence-modules}.
\begin{lemma}
\label{lemma-affine-morphism-equivalence}
Let $f : X \to Y$ be an affine morphism of schemes. Then $f_*$ induces
an equivalence
$$
\Phi : D_\QCoh(\mathcal{O}_X) \longrightarrow D_\QCoh(f_*\mathcal{O}_X)
$$
whose composition with $D_\QCoh(f_*\mathcal{O}_X) \to D_\QCoh(\mathcal{O}_Y)$
is $Rf_* : D_\QCoh(\mathcal{O}_X) \to D_\QCoh(\mathcal{O}_Y)$.
\end{lemma}
\begin{proof}
Recall that $Rf_*$ is computed on an object $K \in D_\QCoh(\mathcal{O}_X)$
by choosing a K-injective complex $\mathcal{I}^\bullet$ of
$\mathcal{O}_X$-modules representing $K$ and taking $f_*\mathcal{I}^\bullet$.
Thus we let $\Phi(K)$ be the complex $f_*\mathcal{I}^\bullet$
viewed as a complex of $f_*\mathcal{O}_X$-modules.
Denote $g : (X, \mathcal{O}_X) \to (Y, f_*\mathcal{O}_X)$ the
obvious morphism of ringed spaces. Then $g$ is a flat morphism of
ringed spaces (see below for a description of the stalks) and
$\Phi$ is the restriction of $Rg_*$ to $D_\QCoh(\mathcal{O}_X)$.
We claim that $Lg^*$ is a quasi-inverse. First, observe that
$Lg^*$ sends $D_\QCoh(f_*\mathcal{O}_X)$ into $D_\QCoh(\mathcal{O}_X)$
because $g^*$ transforms quasi-coherent modules into quasi-coherent
modules (Modules, Lemma \ref{modules-lemma-pullback-quasi-coherent}).
To finish the proof it suffices to show that
the adjunction mappings
$$
Lg^*\Phi(K) = Lg^*Rg_*K \to K
\quad\text{and}\quad
M \to Rg_*Lg^*M = \Phi(Lg^*M)
$$
are isomorphisms for $K \in D_\QCoh(\mathcal{O}_X)$ and
$M \in D_\QCoh(f_*\mathcal{O}_X)$. This is a local question, hence
we may assume $Y$ and therefore $X$ are affine.
\medskip\noindent
Assume $Y = \Spec(B)$ and $X = \Spec(A)$. Let
$\mathfrak p = x \in \Spec(A) = X$ be a point mapping to
$\mathfrak q = y \in \Spec(B) = Y$. Then
$(f_*\mathcal{O}_X)_y = A_\mathfrak q$ and $\mathcal{O}_{X, x} = A_\mathfrak p$
hence $g$ is flat. Hence $g^*$ is exact and $H^i(Lg^*M) = g^*H^i(M)$
for any $M$ in $D(f_*\mathcal{O}_X)$.
For $K \in D_\QCoh(\mathcal{O}_X)$ we see that
$$
H^i(\Phi(K)) = H^i(Rf_*K) = f_*H^i(K)
$$
by the vanishing of higher direct images
(Cohomology of Schemes, Lemma \ref{coherent-lemma-relative-affine-vanishing})
and Lemma \ref{lemma-application-nice-K-injective} (small detail omitted).
Thus it suffice to show that
$$
g^*g_*\mathcal{F} \to \mathcal{F}
\quad\text{and}\quad
\mathcal{G} \to g_*g^*\mathcal{F}
$$
are isomorphisms where $\mathcal{F}$ is
a quasi-coherent $\mathcal{O}_X$-module and $\mathcal{G}$ is
a quasi-coherent $f_*\mathcal{O}_X$-module. This follows from
Morphisms, Lemma \ref{morphisms-lemma-affine-equivalence-modules}.
\end{proof}
\section{Cohomology with support in a closed subset}
\label{section-cohomology-support}
\noindent
We elaborate on the material in Cohomology, Sections
\ref{cohomology-section-cohomology-support} and
\ref{cohomology-section-cohomology-support-bis} for schemes
and quasi-coherent modules.
\begin{definition}
\label{definition-supported-on}
Let $X$ be a scheme. Let $E$ be an object of $D(\mathcal{O}_X)$.
Let $T \subset X$ be a closed subset.
We say $E$ is {\it supported on $T$} if the
cohomology sheaves $H^i(E)$ are supported on $T$.
\end{definition}
\noindent
We repeat some of the discussion from
Cohomology, Section \ref{cohomology-section-cohomology-support-bis}
in the situation of the definition.
Let $X$ be a scheme. Let $T \subset X$ be a closed subset.
The category of $\mathcal{O}_X$-modules whose
support is contained in $T$ is a Serre subcategory of the
category of all $\mathcal{O}_X$-modules, see
Homology, Definition \ref{homology-definition-serre-subcategory}
and
Modules, Lemma \ref{modules-lemma-support-section-closed}.
In the following we will denote $D_T(\mathcal{O}_X)$
the strictly full, saturated triangulated subcategory of
$D(\mathcal{O}_X)$ consisting of objects supported on $T$, see
Derived Categories, Section \ref{derived-section-triangulated-sub}.
\medskip\noindent
In the situation of Definition \ref{definition-supported-on}
denote $i : T \to X$ the inclusion map. Recall from
Cohomology, Section \ref{cohomology-section-cohomology-support-bis}
that in this situation we have a functor
$R\mathcal{H}_T : D(\mathcal{O}_X) \to D(i^{-1}\mathcal{O}_X)$
which is right adjoint to $i_* : D(i^{-1}\mathcal{O}_X) \to D(\mathcal{O}_X)$.
\begin{lemma}
\label{lemma-support-quasi-coherent}
Let $X$ be a scheme. Let $T \subset X$ be a closed subset such that
$X \setminus T$ is a retrocompact open of $X$. Let $i : T \to X$ be
the inclusion.
\begin{enumerate}
\item For $E$ in $D_\QCoh(\mathcal{O}_X)$ we have
$i_*R\mathcal{H}_T(E)$ in $D_{\QCoh, T}(\mathcal{O}_X)$.
\item The functor
$i_* \circ R\mathcal{H}_T : D_\QCoh(\mathcal{O}_X) \to
D_{\QCoh, T}(\mathcal{O}_X)$ is right adjoint to the inclusion functor
$D_{\QCoh, T}(\mathcal{O}_X) \to D_\QCoh(\mathcal{O}_X)$.
\end{enumerate}
\end{lemma}
\begin{proof}
Set $U = X \setminus T$ and denote $j : U \to X$ the inclusion. By
Cohomology, Lemma \ref{cohomology-lemma-triangle-sections-with-support-sheaves}
there is a distinguished triangle
$$
i_*R\mathcal{H}_T(E) \to E \to Rj_*(E|_U) \to i_*R\mathcal{H}_Z(E)[1]
$$
in $D(\mathcal{O}_X)$. By Lemma \ref{lemma-quasi-coherence-direct-image}
the complex $Rj_*(E|_U)$ has quasi-coherent cohomology sheaves
(this is where we use that $U$ is retrocompact in $X$).
Thus we see that (1) is true. Part (2) follows from this and
the adjointness of functors in
Cohomology, Lemma \ref{cohomology-lemma-complexes-with-support-on-closed}.
\end{proof}
\begin{lemma}
\label{lemma-support-direct-sums}
Let $X$ be a scheme. Let $T \subset X$ be a closed subset such that
$X \setminus T$ is a retrocompact open of $X$. Then for a family of
objects $E_i$, $i \in I$ of $D_\QCoh(\mathcal{O}_X)$ we have
$R\mathcal{H}_T(\bigoplus E_i) = \bigoplus R\mathcal{H}_T(E_i)$.
\end{lemma}
\begin{proof}
Set $U = X \setminus T$ and denote $j : U \to X$ the inclusion. By
Cohomology, Lemma \ref{cohomology-lemma-triangle-sections-with-support-sheaves}
there is a distinguished triangle
$$
i_*R\mathcal{H}_T(E) \to E \to Rj_*(E|_U) \to i_*R\mathcal{H}_Z(E)[1]
$$
in $D(\mathcal{O}_X)$ for any $E$ in $D(\mathcal{O}_X)$. The functor
$E \mapsto Rj_*(E|_U)$ commutes with direct sums on $D_\QCoh(\mathcal{O}_X)$
by Lemma \ref{lemma-quasi-coherence-pushforward-direct-sums}.
It follows that the same is true for the functor $i_* \circ R\mathcal{H}_T$
(details omitted). Since $i_* : D(i^{-1}\mathcal{O}_X) \to D_T(\mathcal{O}_X)$
is an equivalence
(Cohomology, Lemma \ref{cohomology-lemma-complexes-with-support-on-closed})
we conclude.
\end{proof}
\begin{remark}
\label{remark-support-c-equations}
Let $X$ be a scheme. Let $f_1, \ldots, f_c \in \Gamma(X, \mathcal{O}_X)$.
Denote $Z \subset X$ the closed subscheme cut out by $f_1, \ldots, f_c$.
For $0 \leq p < c$ and $1 \leq i_0 < \ldots < i_p \leq c$ we denote
$U_{i_0 \ldots i_p} \subset X$ the open subscheme where
$f_{i_0} \ldots f_{i_p}$ is invertible. For any $\mathcal{O}_X$-module
$\mathcal{F}$ we set
$$
\mathcal{F}_{i_0 \ldots i_p} =
(U_{i_0 \ldots i_p} \to X)_*(\mathcal{F}|_{U_{i_0 \ldots i_p}})
$$
In this situation the {\it extended alternating {\v C}ech complex}
is the complex of $\mathcal{O}_X$-modules
\begin{equation}
\label{equation-extended-alternating}
0 \to \mathcal{F} \to
\bigoplus\nolimits_{i_0} \mathcal{F}_{i_0} \to
\ldots \to
\bigoplus\nolimits_{i_0 < \ldots < i_p} \mathcal{F}_{i_0 \ldots i_p} \to
\ldots \to \mathcal{F}_{1 \ldots c} \to 0
\end{equation}
where $\mathcal{F}$ is put in degree $0$. The maps are constructed as
follows. Given
$1 \leq i_0 < \ldots < i_{p + 1} \leq c$ and $0 \leq j \leq p + 1$ we
have the canonical map
$$
\mathcal{F}_{i_0 \ldots \hat i_j \ldots i_{p + 1}} \to
\mathcal{F}_{i_0 \ldots i_p}
$$
coming from the inclusion
$U_{i_0 \ldots i_p} \subset U_{i_0 \ldots \hat i_j \ldots i_{p + 1}}$.
The differentials in the extended alternating complex use these
canonical maps with sign $(-1)^j$.
\end{remark}
\begin{lemma}
\label{lemma-extended-alternating-zero}
With $X$, $f_1, \ldots, f_c \in \Gamma(X, \mathcal{O}_X)$, and
$\mathcal{F}$ as in Remark \ref{remark-support-c-equations}
the complex (\ref{equation-extended-alternating}) restricts to an acyclic
complex over $X \setminus Z$.
\end{lemma}
\noindent
We remark that this lemma holds more generally for any
extended alternating {\v C}ech complex defined as in
Remark \ref{remark-support-c-equations} starting with a finite
open covering $X \setminus Z = U_1 \cup \ldots \cup U_c$.
\begin{proof}
Let $W \subset X \setminus Z$ be an open subset. Evaluating the complex
of sheaves (\ref{equation-extended-alternating}) on $W$ we obtain the
complex
$$
\mathcal{F}(W) \to \bigoplus\nolimits_{i_0} \mathcal{F}(U_{i_0} \cap W) \to
\bigoplus\nolimits_{i_0 < i_1} \mathcal{F}(U_{i_0i_1} \cap W) \to \ldots
$$
In other words, we obtain the extended ordered {\v C}ech complex
for the covering $W = \bigcup U_i \cap W$ and the standard
ordering on $\{1, \ldots, c\}$, see
Cohomology, Section \ref{cohomology-section-alternating-cech}.
By Cohomology, Lemma \ref{cohomology-lemma-alternating-cech-trivial}
this complex is homotopic to zero as soon as $W$ is contained in
$V(f_i)$ for some $1 \leq i \leq c$. This finishes the proof.
\end{proof}
\begin{remark}
\label{remark-extended-alternating-map-to-support}
Let $X$, $f_1, \ldots, f_c \in \Gamma(X, \mathcal{O}_X)$, and
$\mathcal{F}$ be as in Remark \ref{remark-support-c-equations}.
Denote $\mathcal{F}^\bullet$ the complex
(\ref{equation-extended-alternating}). By
Lemma \ref{lemma-extended-alternating-zero}
the cohomology sheaves of $\mathcal{F}^\bullet$
are supported on $Z$ hence $\mathcal{F}^\bullet$ is an object of
$D_Z(\mathcal{O}_X)$. On the other hand, the equality
$\mathcal{F}^0 = \mathcal{F}$ determines a canonical map
$\mathcal{F}^\bullet \to \mathcal{F}$ in $D(\mathcal{O}_X)$.
As $i_* \circ R\mathcal{H}_Z$ is a right adjoint to the
inclusion functor $D_Z(\mathcal{O}_X) \to D(\mathcal{O}_X)$, see
Cohomology, Lemma \ref{cohomology-lemma-complexes-with-support-on-closed},
we obtain a canonical commutative diagram
$$
\xymatrix{
\mathcal{F}^\bullet \ar[rd] \ar[rr] & & \mathcal{F} \\
& i_*R\mathcal{H}_Z(\mathcal{F}) \ar[ru]
}
$$
in $D(\mathcal{O}_X)$ functorial in the $\mathcal{O}_X$-module $\mathcal{F}$.
\end{remark}
\begin{lemma}
\label{lemma-extended-alternating-represented}
With $X$, $f_1, \ldots, f_c \in \Gamma(X, \mathcal{O}_X)$, and
$\mathcal{F}$ as in Remark \ref{remark-support-c-equations}.
If $\mathcal{F}$ is quasi-coherent, then the complex
(\ref{equation-extended-alternating}) represents
$i_* R\mathcal{H}_Z(\mathcal{F})$ in $D_Z(\mathcal{O}_X)$.
\end{lemma}
\begin{proof}
Let us denote $\mathcal{F}^\bullet$ the complex
(\ref{equation-extended-alternating}).
The statement of the lemma means that the map
$\mathcal{F}^\bullet \to i_*R\mathcal{H}_Z(\mathcal{F})$
of Remark \ref{remark-extended-alternating-map-to-support}
is an isomorphism. Since $\mathcal{F}^\bullet$ is in
$D_Z(\mathcal{O}_X)$ (see remark cited), we see that
$i_*R\mathcal{H}_Z(\mathcal{F}^\bullet) = \mathcal{F}^\bullet$
by Cohomology, Lemma \ref{cohomology-lemma-complexes-with-support-on-closed}.
The morphism $U_{i_0 \ldots i_p} \to X$ is affine
as it is given over affine opens of $X$ by inverting the function
$f_{i_0} \ldots f_{i_p}$. Thus we see that
$$
\mathcal{F}_{i_0 \ldots i_p} =
(U_{i_0 \ldots i_p} \to X)_*\mathcal{F}|_{U_{i_0 \ldots i_p}} =
R(U_{i_0 \ldots i_p} \to X)_*\mathcal{F}|_{U_{i_0 \ldots i_p}}
$$
by Cohomology of Schemes, Lemma \ref{coherent-lemma-relative-affine-vanishing}
and the assumption that $\mathcal{F}$ is quasi-coherent. We conclude that
$R\mathcal{H}_Z(\mathcal{F}_{i_0 \ldots i_p}) = 0$ by Cohomology, Lemma
\ref{cohomology-lemma-sections-support-in-closed-disjoint-open}.
Thus $i_*R\mathcal{H}_Z(\mathcal{F}^p) = 0$ for $p > 0$.
Putting everything together we obtain
$$
\mathcal{F}^\bullet = i_*R\mathcal{H}_Z(\mathcal{F}^\bullet) =
i_*R\mathcal{H}_Z(\mathcal{F})
$$
as desired.
\end{proof}