forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
modules.tex
5866 lines (5185 loc) · 197 KB
/
modules.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Sheaves of Modules}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this chapter we work out basic notions of sheaves of modules.
This in particular includes the case of abelian sheaves, since
these may be viewed as sheaves of $\underline{\mathbf{Z}}$-modules.
Basic references are \cite{FAC}, \cite{EGA} and \cite{SGA4}.
\medskip\noindent
We work out what happens for sheaves of modules on ringed topoi
in another chapter (see
Modules on Sites, Section \ref{sites-modules-section-introduction}),
although there we will mostly just duplicate the discussion
from this chapter.
\section{Pathology}
\label{section-pathology}
\noindent
A ringed space is a pair consisting of a topological space $X$
and a sheaf of rings $\mathcal{O}$. We allow $\mathcal{O} = 0$
in the definition. In this case the category of modules has a
single object (namely $0$). It is still an abelian category etc,
but it is a little degenerate. Similarly the sheaf $\mathcal{O}$
may be zero over open subsets of $X$, etc.
\medskip\noindent
This doesn't happen when considering locally ringed spaces (as we
will do later).
\section{The abelian category of sheaves of modules}
\label{section-kernels}
\noindent
Let $(X, \mathcal{O}_X)$ be a ringed space, see
Sheaves, Definition \ref{sheaves-definition-ringed-space}.
Let $\mathcal{F}$, $\mathcal{G}$ be sheaves of $\mathcal{O}_X$-modules, see
Sheaves, Definition \ref{sheaves-definition-sheaf-modules}.
Let $\varphi, \psi : \mathcal{F} \to \mathcal{G}$
be morphisms of sheaves of $\mathcal{O}_X$-modules.
We define $\varphi + \psi : \mathcal{F} \to \mathcal{G}$
to be the map which on each open $U \subset X$ is the
sum of the maps induced by $\varphi$, $\psi$. This is
clearly again a map of sheaves of $\mathcal{O}_X$-modules.
It is also clear that composition of maps of
$\mathcal{O}_X$-modules is bilinear with respect to this
addition. Thus $\textit{Mod}(\mathcal{O}_X)$ is a pre-additive
category, see Homology, Definition \ref{homology-definition-preadditive}.
\medskip\noindent
We will denote $0$ the sheaf of $\mathcal{O}_X$-modules
which has constant value $\{0\}$ for all open $U \subset X$.
Clearly this is both a final and an initial object of
$\textit{Mod}(\mathcal{O}_X)$. Given a morphism
of $\mathcal{O}_X$-modules $\varphi : \mathcal{F} \to \mathcal{G}$
the following are equivalent:
(a) $\varphi$ is zero, (b) $\varphi$ factors through $0$,
(c) $\varphi$ is zero on sections over each open $U$, and
(d) $\varphi_x = 0$ for all $x \in X$. See
Sheaves, Lemma \ref{sheaves-lemma-points-exactness}.
\medskip\noindent
Moreover, given a pair
$\mathcal{F}$, $\mathcal{G}$ of sheaves of $\mathcal{O}_X$-modules
we may define the direct sum as
$$
\mathcal{F} \oplus \mathcal{G} = \mathcal{F} \times \mathcal{G}
$$
with obvious maps $(i, j, p, q)$ as in Homology, Definition
\ref{homology-definition-direct-sum}. Thus $\textit{Mod}(\mathcal{O}_X)$
is an additive category, see
Homology, Definition \ref{homology-definition-additive-category}.
\medskip\noindent
Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a morphism
of $\mathcal{O}_X$-modules. We may define $\Ker(\varphi)$
to be the subsheaf of $\mathcal{F}$ with sections
$$
\Ker(\varphi)(U) =
\{ s \in \mathcal{F}(U) \mid \varphi(s) = 0 \text{ in } \mathcal{G}(U)\}
$$
for all open $U \subset X$. It is easy to see that this is indeed
a kernel in the category of $\mathcal{O}_X$-modules. In other words,
a morphism $\alpha : \mathcal{H} \to \mathcal{F}$ factors
through $\Ker(\varphi)$ if and only if $\varphi \circ \alpha = 0$.
Moreover, on the level of stalks we have
$\Ker(\varphi)_x = \Ker(\varphi_x)$.
\medskip\noindent
On the other hand, we define
$\Coker(\varphi)$ as the sheaf of $\mathcal{O}_X$-modules
associated to the presheaf of $\mathcal{O}_X$-modules defined
by the rule
$$
U
\longmapsto
\Coker(\mathcal{G}(U)\to \mathcal{F}(U)) =
\mathcal{F}(U)/\varphi(\mathcal{G}(U)).
$$
Since taking stalks commutes with taking sheafification, see
Sheaves, Lemma \ref{sheaves-lemma-stalk-sheafification} we
see that $\Coker(\varphi)_x = \Coker(\varphi_x)$.
Thus the map $\mathcal{G} \to \Coker(\varphi)$ is surjective
(as a map of sheaves of sets),
see Sheaves, Section \ref{sheaves-section-exactness-points}.
To show that this is a cokernel, note that if
$\beta : \mathcal{G} \to \mathcal{H}$ is a morphism of $\mathcal{O}_X$-modules
such that $\beta \circ \varphi$ is zero, then you get for every
open $U \subset X$ a map induced by $\beta$ from
$\mathcal{G}(U)/\varphi(\mathcal{F}(U))$ into $\mathcal{H}(U)$.
By the universal property of sheafification (see
Sheaves, Lemma \ref{sheaves-lemma-sheafification-presheaf-modules})
we obtain a canonical map $\Coker(\varphi) \to \mathcal{H}$
such that the original $\beta$ is equal to
the composition
$\mathcal{G} \to \Coker(\varphi) \to \mathcal{H}$.
The morphism $\Coker(\varphi) \to \mathcal{H}$ is unique
because of the surjectivity mentioned above.
\begin{lemma}
\label{lemma-abelian}
Let $(X, \mathcal{O}_X)$ be a ringed space. The category
$\textit{Mod}(\mathcal{O}_X)$ is an abelian category. Moreover
a complex
$$
\mathcal{F} \to \mathcal{G} \to \mathcal{H}
$$
is exact at $\mathcal{G}$ if and only if for all $x \in X$ the
complex
$$
\mathcal{F}_x \to \mathcal{G}_x \to \mathcal{H}_x
$$
is exact at $\mathcal{G}_x$.
\end{lemma}
\begin{proof}
By Homology, Definition \ref{homology-definition-abelian-category}
we have to show that image and coimage agree. By Sheaves,
Lemma \ref{sheaves-lemma-points-exactness} it is enough to show
that image and coimage have the same stalk at every $x \in X$.
By the constructions of kernels and cokernels above these stalks
are the coimage and image in the categories of $\mathcal{O}_{X, x}$-modules.
Thus we get the result from the fact that the category of modules
over a ring is abelian.
\end{proof}
\noindent
Actually the category $\textit{Mod}(\mathcal{O}_X)$ has many more properties.
Here are two constructions we can do.
\begin{enumerate}
\item Given any set $I$ and for each $i \in I$ a $\mathcal{O}_X$-module
we can form the product
$$
\prod\nolimits_{i \in I} \mathcal{F}_i
$$
which is the sheaf that associates to each open $U$ the
product of the modules $\mathcal{F}_i(U)$. This is also the
categorical product, as in
Categories, Definition \ref{categories-definition-product}.
\item Given any set $I$ and for each $i \in I$ a $\mathcal{O}_X$-module
we can form the direct sum
$$
\bigoplus\nolimits_{i \in I} \mathcal{F}_i
$$
which is the {\it sheafification} of the presheaf
that associates to each open $U$ the
direct sum of the modules $\mathcal{F}_i(U)$.
This is also the categorical coproduct, as in
Categories, Definition \ref{categories-definition-coproduct}.
To see this you use the universal property of sheafification.
\end{enumerate}
Using these we conclude that all limits and colimits exist in
$\textit{Mod}(\mathcal{O}_X)$.
\begin{lemma}
\label{lemma-limits-colimits}
Let $(X, \mathcal{O}_X)$ be a ringed space.
\begin{enumerate}
\item All limits exist in $\textit{Mod}(\mathcal{O}_X)$.
Limits are the same as the corresponding limits of presheaves of
$\mathcal{O}_X$-modules (i.e., commute with taking
sections over opens).
\item All colimits exist in $\textit{Mod}(\mathcal{O}_X)$.
Colimits are the sheafification of the corresponding colimit in
the category of presheaves. Taking colimits commutes with taking
stalks.
\item Filtered colimits are exact.
\item Finite direct sums are the same as the corresponding
finite direct sums of presheaves of $\mathcal{O}_X$-modules.
\end{enumerate}
\end{lemma}
\begin{proof}
As $\textit{Mod}(\mathcal{O}_X)$ is abelian (Lemma \ref{lemma-abelian})
it has all finite limits and colimits
(Homology, Lemma \ref{homology-lemma-colimit-abelian-category}).
Thus the existence of limits and colimits and their description follows from
the existence of products and coproducts and their description
(see discussion above) and
Categories, Lemmas \ref{categories-lemma-limits-products-equalizers} and
\ref{categories-lemma-colimits-coproducts-coequalizers}.
Since sheafification commutes with taking stalks we see that
colimits commute with taking stalks. Part (3) signifies that given
a system $0 \to \mathcal{F}_i \to \mathcal{G}_i \to \mathcal{H}_i \to 0$
of exact sequences of $\mathcal{O}_X$-modules over a directed set $I$
the sequence $0 \to \colim \mathcal{F}_i \to \colim \mathcal{G}_i \to
\colim \mathcal{H}_i \to 0$ is exact as well. Since we can check
exactness on stalks (Lemma \ref{lemma-abelian}) this follows from the case
of modules which is
Algebra, Lemma \ref{algebra-lemma-directed-colimit-exact}.
We omit the proof of (4).
\end{proof}
\noindent
The existence of limits and colimits
allows us to consider exactness properties of
functors defined on the category of $\mathcal{O}$-modules
in terms of limits and colimits, as in
Categories, Section \ref{categories-section-exact-functor}.
See Homology, Lemma \ref{homology-lemma-exact-functor} for a
description of exactness
properties in terms of short exact sequences.
\begin{lemma}
\label{lemma-exactness-pushforward-pullback}
Let $f : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$
be a morphism of ringed spaces.
\begin{enumerate}
\item The functor
$f_* : \textit{Mod}(\mathcal{O}_X) \to \textit{Mod}(\mathcal{O}_Y)$
is left exact. In fact it commutes with all limits.
\item The functor
$f^* : \textit{Mod}(\mathcal{O}_Y) \to \textit{Mod}(\mathcal{O}_X)$
is right exact. In fact it commutes with all colimits.
\item Pullback $f^{-1} : \textit{Ab}(Y) \to \textit{Ab}(X)$
on abelian sheaves is exact.
\end{enumerate}
\end{lemma}
\begin{proof}
Parts (1) and (2) hold because $(f^*, f_*)$ is an adjoint pair
of functors, see
Sheaves, Lemma \ref{sheaves-lemma-adjoint-pullback-pushforward-modules}
and
Categories, Section \ref{categories-section-adjoint}.
Part (3) holds because exactness can be checked on stalks
(Lemma \ref{lemma-abelian})
and the description of stalks of the pullback, see
Sheaves, Lemma \ref{sheaves-lemma-pullback-abelian-stalk}.
\end{proof}
\begin{lemma}
\label{lemma-j-shriek-exact}
Let $j : U \to X$ be an open immersion of topological spaces.
The functor $j_! : \textit{Ab}(U) \to \textit{Ab}(X)$
is exact.
\end{lemma}
\begin{proof}
Follows from the description of stalks
given in Sheaves, Lemma \ref{sheaves-lemma-j-shriek-abelian}.
\end{proof}
\begin{lemma}
\label{lemma-section-direct-sum-quasi-compact}
Let $(X, \mathcal{O}_X)$ be a ringed space.
Let $I$ be a set. For $i \in I$, let $\mathcal{F}_i$
be a sheaf of $\mathcal{O}_X$-modules.
For $U \subset X$ quasi-compact open the map
$$
\bigoplus\nolimits_{i \in I} \mathcal{F}_i(U)
\longrightarrow
\left(\bigoplus\nolimits_{i \in I} \mathcal{F}_i\right)(U)
$$
is bijective.
\end{lemma}
\begin{proof}
If $s$ is an element of the right hand side, then
there exists an open covering $U = \bigcup_{j \in J} U_j$
such that $s|_{U_j}$ is a finite sum
$\sum_{i \in I_j} s_{ji}$ with $s_{ji} \in \mathcal{F}_i(U_j)$.
Because $U$ is quasi-compact we may assume that the
covering is finite, i.e., that $J$ is finite.
Then $I' = \bigcup_{j \in J} I_j$ is a finite subset of
$I$. Clearly, $s$ is a section of the subsheaf
$\bigoplus_{i \in I'} \mathcal{F}_i$. The result follows
from the fact that for a finite direct sum sheafification
is not needed, see Lemma \ref{lemma-limits-colimits} above.
\end{proof}
\section{Sections of sheaves of modules}
\label{section-sections}
\noindent
Let $(X, \mathcal{O}_X)$ be a ringed space.
Let $\mathcal{F}$ be a sheaf of $\mathcal{O}_X$-modules.
Let $s \in \Gamma(X, \mathcal{F}) = \mathcal{F}(X)$ be a
global section. There is a unique {\it map of $\mathcal{O}_X$-modules}
$$
\mathcal{O}_X \longrightarrow \mathcal{F}, \ f \longmapsto fs
$$
{\it associated to $s$}. The notation above signifies that a local
section $f$ of $\mathcal{O}_X$, i.e., a section $f$ over some open $U$,
is mapped to the multiplication of $f$ with the restriction of $s$ to
$U$. Conversely, any map $\varphi : \mathcal{O}_X \to \mathcal{F}$
gives rise to a section $s = \varphi(1)$ such that $\varphi$ is
the morphism associated to $s$.
\begin{definition}
\label{definition-globally-generated}
Let $(X, \mathcal{O}_X)$ be a ringed space.
Let $\mathcal{F}$ be a sheaf of $\mathcal{O}_X$-modules.
We say that $\mathcal{F}$ is {\it generated by global
sections} if there exist a set $I$, and
global sections $s_i \in \Gamma(X, \mathcal{F})$, $i \in I$
such that the map
$$
\bigoplus\nolimits_{i \in I}
\mathcal{O}_X \longrightarrow \mathcal{F}
$$
which is the map associated to $s_i$ on the summand corresponding to $i$,
is surjective. In this case we say that the sections $s_i$
{\it generate} $\mathcal{F}$.
\end{definition}
\noindent
We often use the abuse of notation introduced in
Sheaves, Section \ref{sheaves-section-stalks} where, given a local
section $s$ of $\mathcal{F}$ defined in an open neighbourhood
of a point $x \in X$, we denote $s_x$, or even $s$ the image of $s$
in the stalk $\mathcal{F}_x$.
\begin{lemma}
\label{lemma-globally-generated}
Let $(X, \mathcal{O}_X)$ be a ringed space.
Let $\mathcal{F}$ be a sheaf of $\mathcal{O}_X$-modules.
Let $I$ be a set. Let
$s_i \in \Gamma(X, \mathcal{F})$, $i \in I$
be global sections. The sections $s_i$ generate
$\mathcal{F}$ if and only if for all $x\in X$ the
elements $s_{i, x} \in \mathcal{F}_x$ generate
the $\mathcal{O}_{X, x}$-module $\mathcal{F}_x$.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{lemma}
\label{lemma-tensor-product-globally-generated}
\begin{slogan}
The tensor product of globally generated sheaves of modules is
globally generated.
\end{slogan}
Let $(X, \mathcal{O}_X)$ be a ringed space.
Let $\mathcal{F}$, $\mathcal{G}$ be sheaves of $\mathcal{O}_X$-modules.
If $\mathcal{F}$ and $\mathcal{G}$ are generated by global sections
then so is $\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}$.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{lemma}
\label{lemma-generated-by-local-sections}
Let $(X, \mathcal{O}_X)$ be a ringed space.
Let $\mathcal{F}$ be a sheaf of $\mathcal{O}_X$-modules.
Let $I$ be a set. Let $s_i$, $i \in I$ be a collection
of local sections of $\mathcal{F}$, i.e., $s_i \in \mathcal{F}(U_i)$
for some opens $U_i \subset X$. There exists a unique smallest
subsheaf of $\mathcal{O}_X$-modules $\mathcal{G}$ such
that each $s_i$ corresponds to a local section of
$\mathcal{G}$.
\end{lemma}
\begin{proof}
Consider the subpresheaf of $\mathcal{O}_X$-modules
defined by the rule
$$
U
\longmapsto
\{
\text{sums } \sum\nolimits_{i \in J} f_i (s_i|_U)
\text{ where } J \text{ is finite, }
U \subset U_i \text{ for } i\in J, \text{ and }
f_i \in \mathcal{O}_X(U)
\}
$$
Let $\mathcal{G}$ be the sheafification of this subpresheaf.
This is a subsheaf of $\mathcal{F}$ by
Sheaves, Lemma \ref{sheaves-lemma-characterize-epi-mono}.
Since all the finite sums clearly have to be in $\mathcal{G}$
this is the smallest subsheaf as desired.
\end{proof}
\begin{definition}
\label{definition-generated-by-local-sections}
Let $(X, \mathcal{O}_X)$ be a ringed space.
Let $\mathcal{F}$ be a sheaf of $\mathcal{O}_X$-modules.
Given a set $I$, and
local sections $s_i$, $i \in I$ of $\mathcal{F}$
we say that the subsheaf $\mathcal{G}$ of
Lemma \ref{lemma-generated-by-local-sections}
above is the {\it subsheaf generated by the $s_i$}.
\end{definition}
\begin{lemma}
\label{lemma-generated-by-local-sections-stalk}
Let $(X, \mathcal{O}_X)$ be a ringed space.
Let $\mathcal{F}$ be a sheaf of $\mathcal{O}_X$-modules.
Given a set $I$, and
local sections $s_i$, $i \in I$ of $\mathcal{F}$.
Let $\mathcal{G}$ be the subsheaf generated by the
$s_i$ and let $x\in X$.
Then $\mathcal{G}_x$ is the $\mathcal{O}_{X, x}$-submodule of
$\mathcal{F}_x$ generated by the elements $s_{i, x}$
for those $i$ such that $s_i$ is defined at $x$.
\end{lemma}
\begin{proof}
This is clear from the construction of $\mathcal{G}$
in the proof of Lemma \ref{lemma-generated-by-local-sections}.
\end{proof}
\section{Supports of modules and sections}
\label{section-support}
\begin{definition}
\label{definition-support}
Let $(X, \mathcal{O}_X)$ be a ringed space.
Let $\mathcal{F}$ be a sheaf of $\mathcal{O}_X$-modules.
\begin{enumerate}
\item The {\it support of $\mathcal{F}$} is the set of
points $x \in X$ such that $\mathcal{F}_x \not = 0$.
\item We denote $\text{Supp}(\mathcal{F})$ the support of $\mathcal{F}$.
\item Let $s \in \Gamma(X, \mathcal{F})$ be a global section.
The {\it support of $s$} is the set of points $x \in X$
such that the image $s_x \in \mathcal{F}_x$ of $s$ is
not zero.
\end{enumerate}
\end{definition}
\noindent
Of course the support of a local section is then defined also
since a local section is a global section of the restriction of
$\mathcal{F}$.
\begin{lemma}
\label{lemma-support-section-closed}
Let $(X, \mathcal{O}_X)$ be a ringed space.
Let $\mathcal{F}$ be a sheaf of $\mathcal{O}_X$-modules.
Let $U \subset X$ open.
\begin{enumerate}
\item The support of $s \in \mathcal{F}(U)$ is closed in $U$.
\item The support of $fs$ is contained in the intersections
of the supports of $f \in \mathcal{O}_X(U)$ and $s \in \mathcal{F}(U)$.
\item The support of $s + s'$ is contained in the union of
the supports of $s, s' \in \mathcal{F}(U)$.
\item The support of $\mathcal{F}$ is the union of the supports
of all local sections of $\mathcal{F}$.
\item If $\varphi : \mathcal{F} \to \mathcal{G}$ is a morphism of
$\mathcal{O}_X$-modules, then the support of $\varphi(s)$ is
contained in the support of $s \in \mathcal{F}(U)$.
\end{enumerate}
\end{lemma}
\begin{proof}
This is true because if $s_x = 0$, then $s$ is zero
in an open neighbourhood of $x$ by definition of stalks.
Similarly for $f$. Details omitted.
\end{proof}
\noindent
In general the support of a sheaf of modules is not closed.
Namely, the sheaf could be an abelian sheaf on $\mathbf{R}$
(with the usual archimedean topology)
which is the direct sum of infinitely many nonzero skyscraper
sheaves each supported at a single point $p_i$ of $\mathbf{R}$.
Then the support would be the set of points $p_i$
which may not be closed.
\medskip\noindent
Another example is to consider the open immersion
$j : U = (0 , \infty) \to \mathbf{R} = X$, and the abelian sheaf
$j_!\underline{\mathbf{Z}}_U$. By Sheaves, Section
\ref{sheaves-section-open-immersions} the support of
this sheaf is exactly $U$.
\begin{lemma}
\label{lemma-support-sheaf-rings-closed}
Let $X$ be a topological space.
The support of a sheaf of rings is closed.
\end{lemma}
\begin{proof}
This is true because (according to our conventions)
a ring is $0$ if and only if
$1 = 0$, and hence the support of a sheaf of rings
is the support of the unit section.
\end{proof}
\section{Closed immersions and abelian sheaves}
\label{section-closed-immersions}
\noindent
Recall that we think of an abelian sheaf on a topological space $X$ as a
sheaf of $\underline{\mathbf{Z}}_X$-modules. Thus we may apply any results,
definitions for sheaves of modules to abelian sheaves.
\begin{lemma}
\label{lemma-i-star-exact}
Let $X$ be a topological space. Let $Z \subset X$ be a closed subset.
Denote $i : Z \to X$ the inclusion map. The functor
$$
i_* : \textit{Ab}(Z) \longrightarrow \textit{Ab}(X)
$$
is exact, fully faithful, with essential image exactly those
abelian sheaves whose support is contained in $Z$. The functor $i^{-1}$
is a left inverse to $i_*$.
\end{lemma}
\begin{proof}
Exactness follows from the description of
stalks in Sheaves, Lemma \ref{sheaves-lemma-stalks-closed-pushforward}
and Lemma \ref{lemma-abelian}. The rest was shown in
Sheaves, Lemma \ref{sheaves-lemma-equivalence-categories-closed-abelian}.
\end{proof}
\noindent
Let $\mathcal{F}$ be an abelian sheaf on the topological space $X$. Given
a closed subset $Z$, there is a canonical abelian subsheaf of $\mathcal{F}$
which consists of exactly those sections whose support is contained in $Z$.
Here is the exact statement.
\begin{remark}
\label{remark-sections-support-in-closed}
Let $X$ be a topological space. Let $Z \subset X$ be a closed subset.
Let $\mathcal{F}$ be an abelian sheaf on $X$. For $U \subset X$ open set
$$
\mathcal{H}_Z(\mathcal{F})(U) =
\{s \in \mathcal{F}(U) \mid
\text{ the support of }s\text{ is contained in }Z \cap U\}
$$
Then $\mathcal{H}_Z(\mathcal{F})$ is an abelian subsheaf of $\mathcal{F}$.
It is the largest abelian subsheaf of $\mathcal{F}$ whose support is
contained in $Z$. By Lemma \ref{lemma-i-star-exact} we may (and we do)
view $\mathcal{H}_Z(\mathcal{F})$ as an abelian sheaf on $Z$.
In this way we obtain a left exact functor
$$
\textit{Ab}(X) \longrightarrow \textit{Ab}(Z),\quad
\mathcal{F} \longmapsto \mathcal{H}_Z(\mathcal{F})
\text{ viewed as abelian sheaf on }Z
$$
All of the statements made above follow directly from
Lemma \ref{lemma-support-section-closed}.
\end{remark}
\noindent
This seems like a good opportunity to show that the functor
$i_*$ has a right adjoint on abelian sheaves.
\begin{lemma}
\label{lemma-i-star-right-adjoint}
Let $i : Z \to X$ be the inclusion of a closed subset into the
topological space $X$. The functor $\textit{Ab}(X) \to \textit{Ab}(Z)$,
$\mathcal{F} \mapsto \mathcal{H}_Z(\mathcal{F})$ of
Remark \ref{remark-sections-support-in-closed}
is a right adjoint to $i_* : \textit{Ab}(Z) \to \textit{Ab}(X)$.
In particular $i_*$ commutes with arbitrary colimits.
\end{lemma}
\begin{proof}
We have to show that for any abelian sheaf $\mathcal{F}$ on $X$ and any
abelian sheaf $\mathcal{G}$ on $Z$ we have
$$
\Hom_{\textit{Ab}(X)}(i_*\mathcal{G}, \mathcal{F}) =
\Hom_{\textit{Ab}(Z)}(\mathcal{G}, \mathcal{H}_Z(\mathcal{F}))
$$
This is clear because after all any section of $i_*\mathcal{G}$
has support in $Z$. Details omitted.
\end{proof}
\begin{remark}
\label{remark-i-star-right-adjoint}
In Sheaves, Remark \ref{sheaves-remark-i-star-not-exact}
we showed that $i_*$ as a functor
on the categories of sheaves of sets
does not have a right adjoint simply because
it is not exact. However, it is very close to being
true, in fact, the functor $i_*$ is exact on sheaves
of pointed sets, sections with support in $Z$ can
be defined for sheaves of pointed sets, and $\mathcal{H}_Z$
makes sense and is a right adjoint to $i_*$.
\end{remark}
\section{A canonical exact sequence}
\label{section-canonical-exact-sequence}
\noindent
We give this exact sequence its own section.
\begin{lemma}
\label{lemma-canonical-exact-sequence}
Let $X$ be a topological space.
Let $U \subset X$ be an open subset with complement $Z \subset X$.
Denote $j : U \to X$ the open immersion and
$i : Z \to X$ the closed immersion.
For any sheaf of abelian groups $\mathcal{F}$ on $X$
the adjunction mappings $j_{!}j^{-1}\mathcal{F} \to \mathcal{F}$ and
$\mathcal{F} \to i_*i^{-1}\mathcal{F}$ give a short exact
sequence
$$
0 \to j_{!}j^{-1}\mathcal{F} \to \mathcal{F} \to i_*i^{-1}\mathcal{F} \to 0
$$
of sheaves of abelian groups. For any morphism
$\varphi : \mathcal{F} \to \mathcal{G}$ of abelian sheaves on $X$
we obtain a morphism of short exact sequences
$$
\xymatrix{
0 \ar[r] &
j_{!}j^{-1}\mathcal{F} \ar[r] \ar[d] &
\mathcal{F} \ar[r] \ar[d] &
i_*i^{-1}\mathcal{F} \ar[r] \ar[d] &
0 \\
0 \ar[r] &
j_{!}j^{-1}\mathcal{G} \ar[r] &
\mathcal{G} \ar[r] &
i_*i^{-1}\mathcal{G} \ar[r] &
0
}
$$
\end{lemma}
\begin{proof}
The functoriality of the short exact sequence is
immediate from the naturality of the adjunction mappings.
We may check exactness on stalks (Lemma \ref{lemma-abelian}).
For a description of the stalks in question see
Sheaves, Lemmas \ref{sheaves-lemma-j-shriek-abelian}
and \ref{sheaves-lemma-stalks-closed-pushforward}.
\end{proof}
\section{Modules locally generated by sections}
\label{section-locally-generated}
\noindent
Let $(X, \mathcal{O}_X)$ be a ringed space.
In this and the following section we will often restrict
sheaves to open subspaces $U \subset X$, see
Sheaves, Section \ref{sheaves-section-open-immersions}.
In particular, we will often denote the open subspace
by $(U, \mathcal{O}_U)$ instead of the more correct
notation $(U, \mathcal{O}_X|_U)$, see
Sheaves, Definition \ref{sheaves-definition-restriction}.
\medskip\noindent
Consider the open immersion
$j : U = (0 , \infty) \to \mathbf{R} = X$, and the abelian sheaf
$j_!\underline{\mathbf{Z}}_U$. By Sheaves, Section
\ref{sheaves-section-open-immersions} the stalk of
$j_!\underline{\mathbf{Z}}_U$ at $x = 0$ is $0$. In fact the
sections of this sheaf over any open interval containing $0$
are $0$. Thus there is no open neighbourhood of the point
$0$ over which the sheaf can be generated by sections.
\begin{definition}
\label{definition-locally-generated}
Let $(X, \mathcal{O}_X)$ be a ringed space.
Let $\mathcal{F}$ be a sheaf of $\mathcal{O}_X$-modules.
We say that $\mathcal{F}$ is {\it locally generated by sections}
if for every $x \in X$ there exists an open
neighbourhood $U$ of $x$ such that $\mathcal{F}|_U$
is globally generated as a sheaf of $\mathcal{O}_U$-modules.
\end{definition}
\noindent
In other words there exists a set $I$ and for
each $i$ a section $s_i \in \mathcal{F}(U)$ such
that the associated map
$$
\bigoplus\nolimits_{i \in I} \mathcal{O}_U
\longrightarrow
\mathcal{F}|_U
$$
is surjective.
\begin{lemma}
\label{lemma-pullback-locally-generated}
Let $f : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$
be a morphism of ringed spaces.
The pullback $f^*\mathcal{G}$ is locally generated by sections
if $\mathcal{G}$ is locally generated by sections.
\end{lemma}
\begin{proof}
Given an open subspace $V$ of $Y$ we may
consider the commutative diagram of ringed spaces
$$
\xymatrix{
(f^{-1}V, \mathcal{O}_{f^{-1}V}) \ar[r]_{j'} \ar[d]_{f'} &
(X, \mathcal{O}_X) \ar[d]^f \\
(V, \mathcal{O}_V) \ar[r]^j &
(Y, \mathcal{O}_Y)
}
$$
We know that $f^*\mathcal{G}|_{f^{-1}V} \cong (f')^*(\mathcal{G}|_V)$,
see Sheaves, Lemma \ref{sheaves-lemma-push-pull-composition-modules}.
Thus we may assume that $\mathcal{G}$ is globally generated.
\medskip\noindent
We have seen that $f^*$ commutes with all colimits,
and is right exact, see Lemma \ref{lemma-exactness-pushforward-pullback}.
Thus if we have a surjection
$$
\bigoplus\nolimits_{i \in I}
\mathcal{O}_Y
\to
\mathcal{G}
\to
0
$$
then upon applying $f^*$ we obtain the surjection
$$
\bigoplus\nolimits_{i \in I}
\mathcal{O}_X
\to
f^*\mathcal{G}
\to
0.
$$
This implies the lemma.
\end{proof}
\section{Modules of finite type}
\label{section-finite-type}
\begin{definition}
\label{definition-finite-type}
Let $(X, \mathcal{O}_X)$ be a ringed space.
Let $\mathcal{F}$ be a sheaf of $\mathcal{O}_X$-modules.
We say that $\mathcal{F}$ is of {\it finite type}
if for every $x \in X$ there exists an open
neighbourhood $U$ such that $\mathcal{F}|_U$
is generated by finitely many sections.
\end{definition}
\begin{lemma}
\label{lemma-pullback-finite-type}
Let $f : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$
be a morphism of ringed spaces.
The pullback $f^*\mathcal{G}$ of a finite type
$\mathcal{O}_Y$-module is a finite type $\mathcal{O}_X$-module.
\end{lemma}
\begin{proof}
Arguing as in the proof of Lemma \ref{lemma-pullback-locally-generated}
we may assume $\mathcal{G}$ is globally generated by finitely
many sections.
We have seen that $f^*$ commutes with all colimits,
and is right exact, see Lemma \ref{lemma-exactness-pushforward-pullback}.
Thus if we have a surjection
$$
\bigoplus\nolimits_{i = 1, \ldots, n}
\mathcal{O}_Y
\to
\mathcal{G}
\to
0
$$
then upon applying $f^*$ we obtain the surjection
$$
\bigoplus\nolimits_{i = 1, \ldots, n}
\mathcal{O}_X
\to
f^*\mathcal{G}
\to
0.
$$
This implies the lemma.
\end{proof}
\begin{lemma}
\label{lemma-extension-finite-type}
Let $X$ be a ringed space.
The image of a morphism of $\mathcal{O}_X$-modules of finite
type is of finite type.
Let
$0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$
be a short exact sequence of $\mathcal{O}_X$-modules.
If $\mathcal{F}_1$ and $\mathcal{F}_3$ are of finite type,
so is $\mathcal{F}_2$.
\end{lemma}
\begin{proof}
The statement on images is trivial.
The statement on short exact sequences comes from the
fact that sections of $\mathcal{F}_3$ locally lift to sections
of $\mathcal{F}_2$ and the corresponding result in
the category of modules over a ring (applied to the stalks
for example).
\end{proof}
\begin{lemma}
\label{lemma-finite-type-surjective-on-stalk}
Let $X$ be a ringed space.
Let $\varphi : \mathcal{G} \to \mathcal{F}$ be a homomorphism
of $\mathcal{O}_X$-modules.
Let $x \in X$. Assume $\mathcal{F}$ of finite type and
the map on stalks
$\varphi_x : \mathcal{G}_x \to \mathcal{F}_x$ surjective.
Then there exists an open neighbourhood
$x \in U \subset X$ such that $\varphi|_U$ is surjective.
\end{lemma}
\begin{proof}
Choose an open neighbourhood $U \subset X$ of $x$ such that $\mathcal{F}$ is
generated by $s_1, \ldots, s_n \in \mathcal{F}(U)$ over $U$.
By assumption of surjectivity of $\varphi_x$,
after shrinking $U$ we may assume that $s_i = \varphi(t_i)$
for some $t_i \in \mathcal{G}(U)$.
Then $U$ works.
\end{proof}
\begin{lemma}
\label{lemma-finite-type-stalk-zero}
Let $X$ be a ringed space.
Let $\mathcal{F}$ be an $\mathcal{O}_X$-module.
Let $x \in X$.
Assume $\mathcal{F}$ of finite type and $\mathcal{F}_x = 0$.
Then there exists an open neighbourhood
$x \in U \subset X$ such that $\mathcal{F}|_U$ is zero.
\end{lemma}
\begin{proof}
This is a special case of
Lemma \ref{lemma-finite-type-surjective-on-stalk}
applied to the morphism $0 \to \mathcal{F}$.
\end{proof}
\begin{lemma}
\label{lemma-support-finite-type-closed}
\begin{slogan}
Over any ringed space, sheaves of modules of finite type have closed support.
\end{slogan}
Let $(X, \mathcal{O}_X)$ be a ringed space.
Let $\mathcal{F}$ be a sheaf of $\mathcal{O}_X$-modules.
If $\mathcal{F}$ is of finite type then support of $\mathcal{F}$ is closed.
\end{lemma}
\begin{proof}
This is a reformulation of Lemma \ref{lemma-finite-type-stalk-zero}.
\end{proof}
\begin{lemma}
\label{lemma-finite-type-quasi-compact-colimit}
Let $X$ be a ringed space. Let $I$ be a preordered set and
let $(\mathcal{F}_i, f_{ii'})$ be a system over $I$ consisting of sheaves
of $\mathcal{O}_X$-modules (see
Categories, Section \ref{categories-section-posets-limits}).
Let $\mathcal{F} = \colim \mathcal{F}_i$ be the colimit. Assume
(a) $I$ is directed,
(b) $\mathcal{F}$ is a finite type $\mathcal{O}_X$-module, and
(c) $X$ is quasi-compact. Then there exists an $i$ such that
$\mathcal{F}_i \to \mathcal{F}$ is surjective.
If the transition maps $f_{ii'}$ are injective
then we conclude that $\mathcal{F} = \mathcal{F}_i$ for some $i \in I$.
\end{lemma}
\begin{proof}
Let $x \in X$. There exists an open neighbourhood
$U \subset X$ of $x$ and finitely many sections
$s_j \in \mathcal{F}(U)$, $j = 1, \ldots, m$ such that
$s_1, \ldots, s_m$ generate $\mathcal{F}$ as $\mathcal{O}_U$-module.
After possibly shrinking $U$ to a smaller open neighbourhood of $x$
we may assume that each $s_j$ comes from a section of $\mathcal{F}_i$
for some $i \in I$.
Hence, since $X$ is quasi-compact we can find a finite open
covering $X = \bigcup_{j = 1, \ldots, m} U_j$, and for each $j$
an index $i_j$ and finitely many sections $s_{jl} \in \mathcal{F}_{i_j}(U_j)$
whose images generate the restriction of $\mathcal{F}$ to
$U_j$. Clearly, the lemma holds for any index $i \in I$ which
is $\geq$ all $i_j$.
\end{proof}
\begin{lemma}
\label{lemma-set-isomorphism-classes-finite-type-modules}
Let $X$ be a ringed space.
There exists a set of $\mathcal{O}_X$-modules
$\{\mathcal{F}_i\}_{i \in I}$ of finite type
such that each finite type $\mathcal{O}_X$-module
on $X$ is isomorphic to exactly one of the $\mathcal{F}_i$.
\end{lemma}
\begin{proof}
For each open covering $\mathcal{U} : X = \bigcup U_j$ consider the
sheaves of $\mathcal{O}_X$-modules $\mathcal{F}$ such that each
restriction $\mathcal{F}|_{U_j}$ is a quotient of
$\mathcal{O}_{U_j}^{\oplus r_j}$ for some $r_j \geq 0$.
These are parametrized by subsheaves
$\mathcal{K}_j \subset \mathcal{O}_{U_j}^{\oplus r_j}$ and glueing
data
$$
\varphi_{jj'} :
\mathcal{O}_{U_j \cap U_{j'}}^{\oplus r_j}/
(\mathcal{K}_j|_{U_j \cap U_{j'}})
\longrightarrow
\mathcal{O}_{U_j \cap U_{j'}}^{\oplus r_{j'}}/
(\mathcal{K}_{j'}|_{U_j \cap U_{j'}})
$$
see Sheaves, Section \ref{sheaves-section-glueing-sheaves}.
Note that the collection of all glueing data forms a set.
The collection of all coverings $\mathcal{U} : X = \bigcup_{j \in J} U_i$
where $J \to \mathcal{P}(X)$, $j \mapsto U_j$ is injective forms a set as
well. Hence the collection of all sheaves of $\mathcal{O}_X$-modules
gotten from glueing quotients as above forms a set $\mathcal{I}$.
By definition every finite type $\mathcal{O}_X$-module
is isomorphic to an element of $\mathcal{I}$. Choosing an
element out of each isomorphism class inside $\mathcal{I}$
gives the desired set of sheaves (uses axiom of choice).
\end{proof}