forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
examples.tex
6754 lines (5876 loc) · 253 KB
/
examples.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Examples}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
This chapter will contain examples which illuminate the theory.
\section{An empty limit}
\label{section-empty-limit}
\noindent
This example is due to Waterhouse, see \cite{Waterhouse}.
Let $S$ be an uncountable set. For every finite subset
$T \subset S$ consider the set $M_T$ of injective maps $T \to \mathbf{N}$.
For $T \subset T' \subset S$ finite the restriction $M_{T'} \to M_T$
is surjective. Thus we have an inverse system over the
directed partially ordered set of finite subsets of $S$
with surjective transition maps.
But $\lim M_T = \emptyset$ as an element in the limit would
define an injective map $S \to \mathbf{N}$.
\section{A zero limit}
\label{section-zero-limit}
\noindent
Let $(S_i)_{i \in I}$ be a directed inverse system of nonempty sets
with surjective transition maps and
with $\lim S_i = \emptyset$, see Section \ref{section-empty-limit}.
Let $K$ be a field and set
$$
V_i = \bigoplus\nolimits_{s \in S_i} K
$$
Then the transition maps $V_i \to V_j$ are surjective for $i \geq j$.
However, $\lim V_i = 0$. Namely, if $v = (v_i)$ is an element of the
limit, then the support of $v_i$ would be a finite subset $T_i \subset S_i$
with $\lim T_i \not = \emptyset$, see
Categories, Lemma \ref{categories-lemma-nonempty-limit}.
\medskip\noindent
For each $i$ consider the unique $K$-linear map $V_i \to K$ which sends
each basis vector $s \in S_i$ to $1$. Let $W_i \subset V_i$
be the kernel. Then
$$
0 \to (W_i) \to (V_i) \to (K) \to 0
$$
is a nonsplit short exact sequence of inverse systems of vector spaces
over the directed set $I$. Hence
$W_i$ is a directed system of $K$-vector spaces
with surjective transition maps, vanishing limit, and nonvanishing
$R^1\lim$.
\section{Non-quasi-compact inverse limit of quasi-compact spaces}
\label{section-lim-not-quasi-compact}
\noindent
Let $\mathbf{N}$ denote the set of natural numbers.
For every integer $n$, let $I_n$ denote the set of all natural numbers $> n$.
Define $T_n$ to be the unique topology on $\mathbf{N}$ with basis
$\{1\}, \ldots , \{n\}, I_n$. Denote by $X_n$ the topological space
$(\mathbf{N}, T_n)$. For each $m < n$, the identity map,
$$
f_{n, m} : X_n \longrightarrow X_m
$$
is continuous. Obviously for $m < n < p$, the composition
$f_{p, n} \circ f_{n, m}$ equals $f_{p, m}$. So $((X_n), (f_{n,m}))$
is a directed inverse system of quasi-compact topological spaces.
\medskip\noindent
Let $T$ be the discrete topology on $\mathbf{N}$, and let $X$ be
$(\mathbf{N}, T)$. Then for every integer $n$, the identity map,
$$
f_n : X \longrightarrow X_n
$$
is continuous. We claim that this is the inverse limit of the directed
system above. Let $(Y, S)$ be any topological space. For every integer $n$,
let
$$
g_n : (Y, S) \longrightarrow (\mathbf{N}, T_n)
$$
be a continuous map. Assume that for every $m < n$ we have
$f_{n,m} \circ g_n = g_m$, i.e., the system $(g_n)$ is compatible
with the directed system above. In particular, all of the set maps
$g_n$ are equal to a common set map
$$
g : Y \longrightarrow \mathbf{N}.
$$
Moreover, for every integer $n$, since $\{n\}$ is open in $X_n$,
also $g^{-1}(\{n\}) = g_n^{-1}(\{n\})$ is open in $Y$.
Therefore the set map $g$ is continuous for the topology $S$ on $Y$
and the topology $T$ on $\mathbf{N}$. Thus $(X, (f_n))$ is the inverse
limit of the directed system above.
\medskip\noindent
However, clearly $X$ is not quasi-compact, since the infinite open
covering by singleton sets has no inverse limit.
\begin{lemma}
\label{lemma-lim-not-quasi-compact}
There exists an inverse system of quasi-compact topological spaces
over $\mathbf{N}$ whose limit is not quasi-compact.
\end{lemma}
\begin{proof}
See discussion above.
\end{proof}
\section{The structure sheaf on the fibre product}
\label{section-silly}
\noindent
Let $X, Y, S, a, b, p, q, f$ be as in the introduction to
Derived Categories of Schemes,
Section \ref{perfect-section-kunneth}. Picture:
$$
\xymatrix{
& X \times_S Y \ar[ld]^p \ar[rd]_q \ar[dd]^f \\
X \ar[rd]_a & & Y \ar[ld]^b \\
& S
}
$$
Then we have a canonical map
$$
can :
p^{-1}\mathcal{O}_X \otimes_{f^{-1}\mathcal{O}_S} q^{-1}\mathcal{O}_Y
\longrightarrow
\mathcal{O}_{X \times_S Y}
$$
which is not an isomorphism in general.
\medskip\noindent
For example, let $S = \Spec(\mathbf{R})$, $X = \Spec(\mathbf{C})$, and
$Y = \Spec(\mathbf{C})$. Then
$X \times_S Y = \Spec(\mathbf{C}) \amalg \Spec(\mathbf{C})$
is a discrete space with two points
and the sheaves $p^{-1}\mathcal{O}_X$, $q^{-1}\mathcal{O}_Y$
and $f^{-1}\mathcal{O}_S$ are the constant sheaves with values
$\mathbf{C}$, $\mathbf{C}$, and $\mathbf{R}$.
Hence the source of $can$ is the constant sheaf
with value $\mathbf{C} \otimes_\mathbf{R} \mathbf{C}$
on the discrete space with two points. Thus its global
sections have dimension $8$ as an $\mathbf{R}$-vector space
whereas taking global sections of the target of $can$
we obtain $\mathbf{C} \times \mathbf{C}$
which has dimension $4$ as an $\mathbf{R}$-vector space.
\medskip\noindent
Another example is the following. Let $k$ be an algebraically
closed field. Consider
$S = \Spec(k)$, $X = \mathbf{A}^1_k$, and $Y = \mathbf{A}^1_k$.
Then for $U \subset X \times_S Y = \mathbf{A}^2_k$ nonempty open
the images $p(U) \subset X = \mathbf{A}^1_k$ and $q(U) \subset \mathbf{A}^1_k$
are open and the reader can show that
$$
\left(
p^{-1}\mathcal{O}_X \otimes_{f^{-1}\mathcal{O}_S} q^{-1}\mathcal{O}_Y
\right)(U) = \mathcal{O}_X(p(U)) \otimes_k \mathcal{O}_Y(q(U))
$$
This is not equal to $\mathcal{O}_{X \times_S Y}(U)$
if $U$ is the complement of an irreducible curve $C$ in
$X \times_S Y = \mathbf{A}^2_k$ such that both $p|_C$ and $q|_C$
are nonconstant.
\medskip\noindent
Returning to the general case, let $z = (x, y, s, \mathfrak p)$
be a point of $X \times_S Y$ as in
Schemes, Lemma \ref{schemes-lemma-points-fibre-product}.
Then on stalks at $z$ the map $can$ gives the map
$$
can_z :
\mathcal{O}_{X, x} \otimes_{\mathcal{O}_{S, s}} \mathcal{O}_{Y, y}
\longrightarrow
\mathcal{O}_{X \times_S Y, z}
$$
This is a flat ring homomorphism as the target is a localization of the
source (details omitted; hint reduce to the case that $X$, $Y$, and $S$
are affine).
Observe that the source is in general not a local ring, and this gives
another way to see that $can$ is not an isomorphism in general.
\medskip\noindent
More generally, suppose we have an $\mathcal{O}_X$-module $\mathcal{F}$ and an
$\mathcal{O}_Y$-module $\mathcal{G}$. Then there is a canonical map
\begin{align*}
& p^{-1}\mathcal{F} \otimes_{f^{-1}\mathcal{O}_S} q^{-1}\mathcal{G} \\
& =
p^{-1}(\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{O}_X)
\otimes_{f^{-1}\mathcal{O}_S}
q^{-1}(\mathcal{O}_Y \otimes_{\mathcal{O}_Y} \mathcal{G}) \\
& =
p^{-1}\mathcal{F} \otimes_{p^{-1}\mathcal{O}_X} p^{-1}\mathcal{O}_X
\otimes_{f^{-1}\mathcal{O}_S}
q^{-1}\mathcal{O}_Y \otimes_{q^{-1}\mathcal{O}_Y} q^{-1}\mathcal{G} \\
& \xrightarrow{can}
p^{-1}\mathcal{F} \otimes_{q^{-1}\mathcal{O}_X}
\mathcal{O}_{X \times_S Y}
\otimes_{q^{-1}\mathcal{O}_Y} q^{-1}\mathcal{G} \\
& =
p^{-1}\mathcal{F} \otimes_{q^{-1}\mathcal{O}_X}
\mathcal{O}_{X \times_S Y}
\otimes_{\mathcal{O}_{X \times_S Y}}
\mathcal{O}_{X \times_S Y}
\otimes_{q^{-1}\mathcal{O}_Y} q^{-1}\mathcal{G} \\
& =
p^*\mathcal{F} \otimes_{\mathcal{O}_{X \times_S Y}} q^*\mathcal{G}
\end{align*}
which is rarely an isomorphism.
\section{A nonintegral connected scheme whose local rings are domains}
\label{section-connected-locally-integral-not-integral}
\noindent
We give an example of an affine scheme $X = \Spec(A)$ which is
connected, all of whose local rings are domains, but which is not integral.
Connectedness of $X$ means $A$ has no nontrivial idempotents, see
Algebra, Lemma \ref{algebra-lemma-disjoint-decomposition}.
The local rings of $X$ are domains if, whenever $fg = 0$ in $A$, every
point of $X$ has a neighborhood where either $f$ or $g$ vanishes.
As long as $A$ is not a domain, then $X$ is not integral
(Properties, Definition \ref{properties-definition-integral}).
\medskip\noindent
Roughly speaking, the construction is as follows: let $X_0$ be the cross
(the union of coordinate axes) on the affine plane. Then let $X_1$ be
the (reduced) full preimage of $X_0$ on the blowup of the plane ($X_1$
has three rational components forming a chain). Then blow up the
resulting surface at the two singularities of $X_1$, and let $X_2$ be
the reduced preimage of $X_1$ (which has five rational components), etc.
Take $X$ to be the inverse limit. The only problem with this construction
is that blowups glue in a projective line, so $X_1$ is not affine. Let us
correct this by glueing in an affine line instead (so our scheme will be an
open subset in what was described above).
\medskip\noindent
Here is a completely algebraic construction: For every $k \ge 0$, let $A_k$
be the following ring: its elements are collections of
polynomials $p_i \in \mathbf{C}[x]$ where $i = 0, \ldots, 2^k$ such that
$p_i(1) = p_{i + 1}(0)$. Set $X_k = \Spec(A_k)$. Observe that $X_k$ is
a union of $2^k + 1$ affine lines that meet transversally in a chain.
Define a ring homomorphism $A_k \to A_{k + 1}$ by
$$
(p_0, \ldots, p_{2^k})
\longmapsto
(p_0, p_0(1), p_1, p_1(1), \ldots, p_{2^k}),
$$
in other words, every other polynomial is constant. This identifies
$A_k$ with a subring of $A_{k + 1}$. Let $A$ be the direct limit of $A_k$
(basically, their union). Set $X = \Spec(A)$. For every $k$, we have
a natural embedding $A_k \to A$, that is, a map $X\to X_k$.
Each $A_k$ is connected but not integral; this implies that $A$ is
connected but not integral. It remains to show that the local rings of
$A$ are domains.
\medskip\noindent
Take $f, g \in A$ with $fg = 0$ and $x \in X$. Let us construct a
neighborhood of $x$ on which one of $f$ and $g$ vanishes. Choose $k$
such that $f, g \in A_{k - 1}$ (note the $k - 1$ index).
Let $y$ be the image of $x$ in $X_k$. It suffices to prove that $y$ has
a neighborhood on which either $f$ or $g$ viewed as sections of
$\mathcal{O}_{X_k}$ vanishes.
If $y$ is a smooth point of $X_k$, that is, it lies on only one of the
$2^k + 1$ lines, this is obvious. We can therefore assume that $y$ is one
of the $2^k$ singular points, so two components of $X_k$ pass through
$y$. However, on one of these two components (the one with odd index),
both $f$ and $g$ are constant, since they are pullbacks of functions on
$X_{k - 1}$. Since $fg = 0$ everywhere, either $f$ or $g$ (say, $f$)
vanishes on the other component.
This implies that $f$ vanishes on both components, as required.
\section{Noncomplete completion}
\label{section-noncomplete-completion}
\noindent
Let $R$ be a ring and let $\mathfrak m$ be a maximal ideal. Consider the
completion
$$
R^\wedge = \lim R/\mathfrak m^n.
$$
Note that $R^\wedge$ is a local ring with maximal ideal
$\mathfrak m' = \Ker(R^\wedge \to R/\mathfrak m)$.
Namely, if $x = (x_n) \in R^\wedge$ is not in $\mathfrak m'$, then
$y = (x_n^{-1}) \in R^\wedge$ satisfies $xy = 1$, whence $R^\wedge$ is local by
Algebra, Lemma \ref{algebra-lemma-characterize-local-ring}. Now it is
always true that $R^\wedge$ complete in its limit topology (see the
discussion in
More on Algebra, Section \ref{more-algebra-section-topological-ring}).
But beyond that, we have the following questions:
\begin{enumerate}
\item Is it true that $\mathfrak m R^\wedge = \mathfrak m'$?
\item Is $R^\wedge$ viewed as an $R^\wedge$-module $\mathfrak m'$-adically
complete?
\item Is $R^\wedge$ viewed as an $R$-module $\mathfrak m$-adically complete?
\end{enumerate}
It turns out that these questions all have a negative answer.
The example below was taken from an unpublished note of
Bart de Smit and Hendrik Lenstra. See also
\cite[Exercise III.2.12]{Bourbaki-CA} and
\cite[Example 1.8]{Yekutieli}
\medskip\noindent
Let $k$ be a field, $R = k[x_1, x_2, x_3, \ldots]$, and
$\mathfrak m = (x_1, x_2, x_3, \ldots)$.
We will think of an element $f$ of $R^\wedge$ as a (possibly) infinite sum
$$
f = \sum a_I x^I
$$
(using multi-index notation) such that for each $d \geq 0$ there
are only finitely many nonzero $a_I$ for $|I| = d$. The maximal
ideal $\mathfrak m' \subset R^\wedge$ is the collection of $f$ with
zero constant term. In particular, the element
$$
f = x_1 + x_2^2 + x_3^3 + \ldots
$$
is in $\mathfrak m'$ but not in $\mathfrak m R^\wedge$ which
shows that (1) is false in this example. However, if (1) is
false, then (3) is necessarily false because
$\mathfrak m' = \Ker(R^\wedge \to R/\mathfrak m)$
and we can apply
Algebra, Lemma \ref{algebra-lemma-hathat} with $n = 1$.
\medskip\noindent
To finish we prove that $R^\wedge$ is not $\mathfrak m'$-adically complete.
For $n \geq 1$ let $K_n = \Ker(R^\wedge \to R/\mathfrak m^n)$. Then
we have short exact sequences
$$
0 \to K_n/(\mathfrak m')^n \to R^\wedge/(\mathfrak m')^n \to
R/\mathfrak m^n \to 0
$$
The projection map $R^\wedge \to R/\mathfrak m^{n + 1}$ sends
$(\mathfrak m')^n$ onto $\mathfrak m^n/\mathfrak m^{n + 1}$.
It follows that $K_{n + 1} \to K_n/(\mathfrak m')^n$ is surjective.
Hence the inverse system $\left(K_n/(\mathfrak m')^n\right)$
has surjective transition maps and
taking inverse limits we obtain an exact sequence
$$
0 \to \lim K_n/(\mathfrak m')^n \to
\lim R^\wedge/(\mathfrak m')^n \to
\lim R/\mathfrak m^n \to 0
$$
by Algebra, Lemma \ref{algebra-lemma-Mittag-Leffler}.
Thus we see that $R^\wedge$ is complete with respect to $\mathfrak m'$
if and only if $K_n = (\mathfrak m')^n$ for all $n \geq 1$.
\medskip\noindent
To show that $R^\wedge$ is not $\mathfrak m'$-adically complete
in our example we show that $K_2 = \Ker(R^\wedge \to R/\mathfrak m^2)$
is not equal to $(\mathfrak m')^2$.
Note that an element of $(\mathfrak m')^2$
can be written as a finite sum
\begin{equation}
\label{equation-sum}
\sum\nolimits_{i = 1, \ldots, t} f_i g_i
\end{equation}
with $f_i, g_i \in R^\wedge$ having vanishing constant terms.
To get an example we are going to choose an $z \in K_2$
of the form
$$
z = z_1 + z_2 + z_3 + \ldots
$$
with the following properties
\begin{enumerate}
\item there exist sequences $1 < d_1 < d_2 < d_3 < \ldots $ and
$0 < n_1 < n_2 < n_3 < \ldots$ such that
$z_i \in k[x_{n_i}, x_{n_i + 1}, \ldots, x_{n_{i + 1} - 1}]$
homogeneous of degree $d_i$, and
\item in the ring $k[[x_{n_i}, x_{n_i + 1}, \ldots, x_{n_{i + 1} - 1}]]$
the element $z_i$ cannot be written as a sum (\ref{equation-sum})
with $t \leq i$.
\end{enumerate}
Clearly this implies that $z$ is not in $(\mathfrak m')^2$
because the image of the relation (\ref{equation-sum}) in the
ring $k[[x_{n_i}, x_{n_i + 1}, \ldots, x_{n_{i + 1} - 1}]]$
for $i$ large enough would produce a contradiction. Hence it suffices
to prove that for all $t > 0$ there exists a $d \gg 0$ and an integer
$n$ such that we can find an homogeneous element
$z \in k[x_1, \ldots, x_n]$ of degree $d$ which cannot be written as
a sum (\ref{equation-sum}) for the given $t$ in $k[[x_1, \ldots, x_n]]$.
Take $n > 2t$ and any $d > 1$ prime to the characteristic of $k$ and
set $z = \sum_{i = 1, \ldots, n} x_i^d$. Then the vanishing locus
of the ideal
$$
(\frac{\partial z}{\partial x_1}, \ldots, \frac{\partial z}{\partial x_n})
=
(dx_1^{d - 1}, \ldots, dx_n^{d - 1})
$$
consists of one point. On the other hand,
$$
\frac{\partial ( \sum\nolimits_{i = 1, \ldots, t} f_i g_i ) }{\partial x_j}
\in (f_1, \ldots, f_t, g_1, \ldots, g_t)
$$
by the Leibniz rule and hence the vanishing locus of these derivatives
contains at least
$$
V(f_1, \ldots, f_t, g_1, \ldots, g_t) \subset
\Spec(k[[x_1, \ldots, x_n]]).
$$
Hence this is a contradiction as the dimension of
$V(f_1, \ldots, f_t, g_1, \ldots, g_t)$ is at least $n - 2t \geq 1$.
\begin{lemma}
\label{lemma-noncomplete-completion}
There exists a local ring $R$ and a maximal ideal $\mathfrak m$ such that
the completion $R^\wedge$ of $R$ with respect to $\mathfrak m$ has the
following properties
\begin{enumerate}
\item $R^\wedge$ is local, but its maximal ideal is not equal to
$\mathfrak m R^\wedge$,
\item $R^\wedge$ is not a complete local ring, and
\item $R^\wedge$ is not $\mathfrak m$-adically complete as an $R$-module.
\end{enumerate}
\end{lemma}
\begin{proof}
This follows from the discussion above as (with $R = k[x_1, x_2, x_3, \ldots]$)
the completion of the localization $R_{\mathfrak m}$ is equal to the
completion of $R$.
\end{proof}
\section{Noncomplete quotient}
\label{section-noncomplete-quotient}
\noindent
Let $k$ be a field. Let
$$
R = k[t, z_1, z_2, z_3, \ldots, w_1, w_2, w_3, \ldots, x]/
(z_it - x^iw_i, z_i w_j)
$$
Note that in particular $z_iz_jt = 0$ in this ring. Any element $f$ of $R$
can be uniquely written as a finite sum
$$
f = \sum\nolimits_{i = 0, \ldots, d} f_i x^i
$$
where each $f_i \in k[t, z_i, w_j]$ has no terms involving the products
$z_it$ or $z_iw_j$. Moreover, if $f$ is written in this way, then
$f \in (x^n)$ if and only if $f_i = 0$ for $i < n$.
So $x$ is a nonzerodivisor and $\bigcap (x^n) = 0$.
Let $R^\wedge$ be the completion of $R$ with respect to the ideal $(x)$.
Note that $R^\wedge$ is $(x)$-adically complete, see
Algebra, Lemma \ref{algebra-lemma-hathat-finitely-generated}.
By the above we see that an element of $R^\wedge$ can be uniquely written
as an infinite sum
$$
f = \sum\nolimits_{i = 0}^\infty f_i x^i
$$
where each $f_i \in k[t, z_i, w_j]$ has no terms involving the products
$z_it$ or $z_iw_j$. Consider the element
$$
f = \sum\nolimits_{i = 1}^\infty x^i w_i =
xw_1 + x^2w_2 + x^3w_3 + \ldots
$$
i.e., we have $f_n = w_n$. Note that $f \in (t , x^n)$ for every $n$
because $x^mw_m \in (t)$ for all $m$.
We claim that $f \not \in (t)$. To prove this assume that
$tg = f$ where $g = \sum g_lx^l$ in canonical form as above.
Since $tz_iz_j = 0$ we may as well assume that none of the $g_l$ have
terms involving the products $z_iz_j$. Examining the process to
get $tg$ in canonical form we see the following:
Given any term $c m$ of $g_l$ where $c \in k$ and $m$ is a
monomial in $t, z_i, w_j$ and we make the following replacement
\begin{enumerate}
\item if the monomial $m$ does not involve any $z_i$, then $ctm$ is
a term of $f_l$, and
\item if the monomial $m$ does involve a $z_i$ then it is equal to
$m = z_i$ and we see that $cw_i$ is term of $f_{l + i}$.
\end{enumerate}
Since $g_0$ is a polynomial only finitely many of the variables $z_i$
occur in it. Pick $n$ such that $z_n$ does not occur in $g_0$.
Then the rules above show that $w_n$ does not occur in $f_n$ which is
a contradiction. It follows that $R^\wedge/(t)$ is not complete, see
Algebra, Lemma \ref{algebra-lemma-quotient-complete}.
\begin{lemma}
\label{lemma-noncomplete-quotient}
There exists a ring $R$ complete with respect to a principal ideal
$I$ and a principal ideal $J$ such that $R/J$ is not $I$-adically
complete.
\end{lemma}
\begin{proof}
See discussion above.
\end{proof}
\section{Completion is not exact}
\label{section-completion-not-exact}
\noindent
A quick example is the following. Suppose that $R = k[t]$. Let
$P = K = \bigoplus_{n \in \mathbf{N}} R$ and
$M = \bigoplus_{n \in \mathbf{N}} R/(t^n)$. Then there is a short exact
sequence $0 \to K \to P \to M \to 0$ where the first map is given by
multiplication by $t^n$ on the $n$th summand. We claim that
$0 \to K^\wedge \to P^\wedge \to M^\wedge \to 0$ is not exact in the middle.
Namely, $\xi = (t^2, t^3, t^4, \ldots) \in P^\wedge$ maps to zero in
$M^\wedge$ but is not in the image of $K^\wedge \to P^\wedge$, because
it would be the image of $(t, t, t, \ldots)$ which is not an element of
$K^\wedge$.
\medskip\noindent
A ``smaller'' example is the following. In the situation of
Lemma \ref{lemma-noncomplete-quotient}
the short exact sequence $0 \to J \to R \to R/J \to 0$ does not remain
exact after completion. Namely, if $f \in J$ is a generator, then
$f : R \to J$ is surjective, hence $R \to J^\wedge$ is surjective, hence
the image of $J^\wedge \to R$ is $(f) = J$ but the fact that
$R/J$ is noncomplete means that the kernel of the surjection
$R \to (R/J)^\wedge$ is strictly bigger than $J$, see
Algebra, Lemmas \ref{algebra-lemma-completion-generalities} and
\ref{algebra-lemma-quotient-complete}.
By the same token the sequence
$R \to R \to R/(f) \to 0$ does not remain exact on completion.
\begin{lemma}
\label{lemma-completion-not-exact}
\begin{slogan}
Completion is neither left nor right exact in general.
\end{slogan}
Completion is not an exact functor in general; it is not even
right exact in general. This holds even when $I$ is finitely
generated on the category of finitely presented modules.
\end{lemma}
\begin{proof}
See discussion above.
\end{proof}
\section{The category of complete modules is not abelian}
\label{section-non-abelian}
\noindent
Let $R$ be a ring and let $I \subset R$ be a finitely generated ideal.
Consider the category $\mathcal{A}$ of $I$-adically complete
$R$-modules, see
Algebra, Definition \ref{algebra-definition-complete}.
Let $\varphi : M \to N$ be a morphism of $\mathcal{A}$.
The cokernel of $\varphi$ in $\mathcal{A}$ is the completion
$(\Coker(\varphi))^\wedge$ of the usual cokernel
(as $I$ is finitely generated this completion is complete, see
Algebra, Lemma \ref{algebra-lemma-hathat-finitely-generated}).
Let $K = \Ker(\varphi)$. We claim that $K$ is complete and
hence is the kernel of $\varphi$ in $\mathcal{A}$. Namely, let
$K^\wedge$ be the completion. As $M$ is complete we obtain a factorization
$$
K \to K^\wedge \to M \xrightarrow{\varphi} N
$$
Since $\varphi$ is continuous for the $I$-adic topology, $K \to K^\wedge$
has dense image, and $K = \Ker(\varphi)$ we conclude that $K^\wedge$
maps into $K$. Thus $K^\wedge = K \oplus C$ and $K$ is a direct summand
of a complete module, hence complete.
\medskip\noindent
We will give an example that shows that $\Im \not = \Coim$
in general. We take $R = \mathbf{Z}_p = \lim_n \mathbf{Z}/p^n\mathbf{Z}$
to be the ring of $p$-adic integers and we take $I = (p)$.
Consider the map
$$
\text{diag}(1, p, p^2, \ldots) :
\left(\bigoplus\nolimits_{n \geq 1} \mathbf{Z}_p\right)^\wedge
\longrightarrow
\prod\nolimits_{n \geq 1} \mathbf{Z}_p
$$
where the left hand side is the $p$-adic completion of the direct sum.
Hence an element of the left hand side is a vector $(x_1, x_2, x_3, \ldots)$
with $x_i \in \mathbf{Z}_p$ with $p$-adic valuation $v_p(x_i) \to \infty$ as
$i \to \infty$. This maps to $(x_1, px_2, p^2x_3, \ldots)$. Hence we see
that $(1, p, p^2, \ldots)$ is in the closure of the image but not in
the image. By our description of kernels and cokernels above it is
clear that $\Im \not = \Coim$ for this map.
\begin{lemma}
\label{lemma-complete-modules-not-abelian}
Let $R$ be a ring and let $I \subset R$ be a finitely generated ideal.
The category of $I$-adically complete $R$-modules has kernels and
cokernels but is not abelian in general.
\end{lemma}
\begin{proof}
See above.
\end{proof}
\section{The category of derived complete modules}
\label{section-derived-complete-modules}
\noindent
Please read More on Algebra, Section
\ref{more-algebra-section-derived-complete-modules}
before reading this section.
\medskip\noindent
Let $A$ be a ring, let $I$ be an ideal of $A$, and denote $\mathcal{C}$
the category of derived complete modules as defined in
More on Algebra, Definition \ref{more-algebra-definition-derived-complete}.
\medskip\noindent
Let $T$ be a set and let $M_t$, $t \in T$ be a family of derived complete
modules. We claim that in general $\bigoplus M_t$ is not a derived complete
module. For a specific example, let $A = \mathbf{Z}_p$ and $I = (p)$ and
consider $\bigoplus_{n \in \mathbf{N}} \mathbf{Z}_p$. The map from
$\bigoplus_{n \in \mathbf{N}} \mathbf{Z}_p$ to its $p$-adic completion
isn't surjective. This means that $\bigoplus_{n \in \mathbf{N}} \mathbf{Z}_p$
cannot be derived complete as this would imply otherwise, see
More on Algebra, Lemma \ref{more-algebra-lemma-complete-derived-complete}.
Hence the inclusion functor $\mathcal{C} \to \text{Mod}_A$ does not commute
with either direct sums or (filtered) colimits.
\medskip\noindent
Assume $I$ is finitely generated. By the discussion in More on Algebra, Section
\ref{more-algebra-section-derived-complete-modules} the category
$\mathcal{C}$ has arbitrary colimits. However, we claim that filtered colimits
are not exact in the category $\mathcal{C}$. Namely, suppose that
$A = \mathbf{Z}_p$ and $I = (p)$. One has inclusions
$f_n : \mathbf{Z}_p/p\mathbf{Z}_p \to \mathbf{Z}_p/p^n\mathbf{Z}_p$
of $p$-adically complete $A$-modules given by multiplication by
$p^{n - 1}$. There are commutative diagrams
$$
\xymatrix{
\mathbf{Z}_p/p\mathbf{Z}_p \ar[r]_{f_n} \ar[d]^1 &
\mathbf{Z}_p/p^n\mathbf{Z}_p \ar[d]_p \\
\mathbf{Z}_p/p\mathbf{Z}_p \ar[r]^{f_{n + 1}} &
\mathbf{Z}_p/p^{n + 1}\mathbf{Z}_p
}
$$
We claim: the colimit of these inclusions in the category $\mathcal{C}$
gives the map $\mathbf{Z}_p/p\mathbf{Z}_p \to 0$. Namely, the colimit in
$\text{Mod}_A$ of the system on the right is $\mathbf{Q}_p/\mathbf{Z}_p$.
Thus the colimit in $\mathcal{C}$ is
$$
H^0((\mathbf{Q}_p/\mathbf{Z}_p)^\wedge) =
H^0(\mathbf{Z}_p[1]) = 0
$$
by More on Algebra, Section
\ref{more-algebra-section-derived-complete-modules}
where ${}^\wedge$ is derived completion.
This proves our claim.
\begin{lemma}
\label{lemma-derived-complete-modules}
Let $A$ be a ring and let $I \subset A$ be an ideal.
The category $\mathcal{C}$ of derived complete modules
is abelian and the inclusion functor $F : \mathcal{C} \to \text{Mod}_A$
is exact and commutes with arbitrary limits.
If $I$ is finitely generated, then $\mathcal{C}$ has
arbitrary direct sums and colimits, but $F$ does not commute with these
in general. Finally, filtered colimits are not exact in $\mathcal{C}$
in general, hence $\mathcal{C}$ is not a Grothendieck abelian category.
\end{lemma}
\begin{proof}
See More on Algebra, Lemma \ref{more-algebra-lemma-derived-complete-modules}
and discussion above.
\end{proof}
\section{Nonflat completions}
\label{section-nonflat}
\noindent
The completion of a ring with respect to an ideal isn't always flat,
contrary to the Noetherian case. We have seen two examples of this
phenomenon in
More on Algebra, Example \ref{more-algebra-example-not-glueing-pair}.
In this section we give two more examples.
\begin{lemma}
\label{lemma-countable-fg-tensor}
Let $R$ be a ring. Let $M$ be an $R$-module which is countable.
Then $M$ is a finite $R$-module if and only if
$M \otimes_R R^\mathbf{N} \to M^\mathbf{N}$ is surjective.
\end{lemma}
\begin{proof}
If $M$ is a finite module, then the map is surjective by Algebra, Proposition
\ref{algebra-proposition-fg-tensor}. Conversely, assume the map is surjective.
Let $m_1, m_2, m_3, \ldots$ be an enumeration of the elements of $M$.
Let $\sum_{j = 1, \ldots, m} x_j \otimes a_j$ be an element of the
tensor product mapping to the element $(m_n) \in M^\mathbf{N}$. Then
we see that $x_1, \ldots, x_m$ generate $M$ over $R$ as in the proof of
Algebra, Proposition \ref{algebra-proposition-fg-tensor}.
\end{proof}
\begin{lemma}
\label{lemma-countable-fp-tensor}
Let $R$ be a countable ring. Let $M$ be a countable $R$-module. Then $M$
is finitely presented if and only if the canonical map
$M \otimes_R R^\mathbf{N} \to M^\mathbf{N}$ is an isomorphism.
\end{lemma}
\begin{proof}
If $M$ is a finitely presented module, then the map is an isomorphism
by Algebra, Proposition \ref{algebra-proposition-fp-tensor}. Conversely,
assume the map is an isomorphism. By Lemma \ref{lemma-countable-fg-tensor}
the module $M$ is finite. Choose a surjection $R^{\oplus m} \to M$ with
kernel $K$. Then $K$ is countable as a submodule of $R^{\oplus m}$.
Arguing as in the proof of Algebra, Proposition
\ref{algebra-proposition-fp-tensor} we see that
$K \otimes_R R^\mathbf{N} \to K^\mathbf{N}$ is surjective.
Hence we conclude that $K$ is a finite $R$-module by
Lemma \ref{lemma-countable-fg-tensor}.
Thus $M$ is finitely presented.
\end{proof}
\begin{lemma}
\label{lemma-countable-coherent}
Let $R$ be a countable ring. Then $R$ is coherent if and only if
$R^\mathbf{N}$ is a flat $R$-module.
\end{lemma}
\begin{proof}
If $R$ is coherent, then $R^\mathbf{N}$ is a flat module by
Algebra, Proposition \ref{algebra-proposition-characterize-coherent}.
Assume $R^\mathbf{N}$ is flat. Let $I \subset R$ be a finitely
generated ideal. To prove the lemma we show that $I$ is finitely
presented as an $R$-module. Namely, the map
$I \otimes_R R^\mathbf{N} \to R^\mathbf{N}$ is
injective as $R^\mathbf{N}$ is flat and its image is
$I^\mathbf{N}$ by Lemma \ref{lemma-countable-fg-tensor}.
Thus we conclude by Lemma \ref{lemma-countable-fp-tensor}.
\end{proof}
\noindent
Let $R$ be a countable ring. Observe that $R[[x]]$ is isomorphic to
$R^\mathbf{N}$ as an $R$-module. By Lemma \ref{lemma-countable-coherent}
we see that $R \to R[[x]]$ is flat if and only if $R$ is coherent.
There are plenty of noncoherent countable rings, for example
$$
R = k[y, z, a_1, b_1, a_2, b_2, a_3, b_3, \ldots]/
(a_1 y + b_1 z, a_2 y + b_2 z, a_3 y + b_3 z, \ldots)
$$
where $k$ is a countable field. This ring is not coherent because
the ideal $(y, z)$ of $R$ is not a finitely presented $R$-module.
Note that $R[[x]]$ is the completion of $R[x]$ by the principal
ideal $(x)$.
\begin{lemma}
\label{lemma-completion-polynomial-ring-not-flat}
There exists a ring such that the completion $R[[x]]$ of $R[x]$
at $(x)$ is not flat over $R$ and a fortiori not flat over $R[x]$.
\end{lemma}
\begin{proof}
See discussion above.
\end{proof}
\noindent
It turns out there is a ring $R$ such that $R[[x]]$ is flat
over $R$, but $R[[x]]$ is not flat over $R[x]$. See
\href{https://math.stackexchange.com/users/164860/badam-baplan}{this post}
by Badam Baplan. Namely, let
$R$ be a valuation ring. Then $R$ is coherent (Algebra, Example
\ref{algebra-example-valuation-ring-coherent}) and hence
$R[[x]]$ is flat over $R$ by
Algebra, Proposition \ref{algebra-proposition-characterize-coherent}.
On the other hand, we have the following lemma.
\begin{lemma}
\label{lemma-almost-integral-when-powerseries-flat}
Let $R$ be a domain with fraction field $K$.
If $R[[x]]$ is flat over $R[x]$, then $R$ is normal if and only
if $R$ is completely normal
(Algebra, Definition \ref{algebra-definition-almost-integral}).
\end{lemma}
\begin{proof}
Suppose we have $\alpha \in K$ and a nonzero $r \in R$ such that
$r \alpha^n \in R$ for all $n \geq 1$. Then we consider
$f = \sum r \alpha^{n - 1} x^n$ in $R[[x]]$. Write $\alpha = a/b$
for $a, b \in R$ with $b$ nonzero. Then we see that $(a x - b)f = -rb$.
It follows that $rb$ is in the ideal $(ax - b)R[[x]]$.
Let $S = \{h \in R[x] : h(0) = 1\}$. This is a multiplicative subset
and flatness of $R[x] \to R[[x]]$ implies that $S^{-1}R[x] \to R[[x]]$
is faithfully flat (details omitted; hint: use Algebra, Lemma
\ref{algebra-lemma-ff-rings}). Hence
$$
S^{-1}R/(ax - b)S^{-1}R \to R[[x]]/(ax - b)R[[x]]
$$
is injective. We conclude that
$h rb = (ax - b) g$ for some $h \in S$ and $g \in R[x]$.
Writing $h = 1 + h_1 x + \ldots + h_d x^d$ shows that we obtain
$$
1 + h_1 x + \ldots + h_d x^d = (1/r)(\alpha x - 1)g
$$
This factorization in $K[x]$ gives a corresponding factorization
in $K[x^{-1}]$ which shows that $\alpha$ is the root of a monic
polynomial with coefficients in $R$ as desired.
\end{proof}
\begin{lemma}
\label{lemma-completion-polynomial-ring-not-flat-bis}
If $R$ is a valuation ring of dimension $> 1$, then $R[[x]]$
is flat over $R$ but not flat over $R[x]$.
\end{lemma}
\begin{proof}
The arguments above show that this is true if we can show that
$R$ is not completely normal (valuation rings are
normal, see Algebra, Lemma \ref{algebra-lemma-valuation-ring-normal}).
Let $\mathfrak p \subset \mathfrak m \subset R$ be a chain of primes.
Pick nonzero $x \in \mathfrak p$ and $y \in \mathfrak m \setminus \mathfrak p$.
Then $x y^{-n} \in R$ for all $n \geq 1$ (if not then $y^n/x \in R$
which is absurd because $y \not \in \mathfrak p$). Hence $1/y$ is
almost integral over $R$ but not in $R$.
\end{proof}
\noindent
Next, we will construct an example where the completion of a localization
is nonflat. To do this consider the ring
$$
R = k[y, z, a_1, a_2, a_3, \ldots]/(ya_i, a_i a_j)
$$
Denote $f \in R$ the residue class of $z$. We claim the ring map
\begin{equation}
\label{equation-nonflat}
R[[x]] \longrightarrow R_f[[x]]
\end{equation}
isn't flat. Let $I$ be the kernel of $y : R[[x]] \to R[[x]]$. A typical
element $g$ of $I$ looks like $g = \sum g_{n, m} a_mx^n$
where $g_{n, m} \in k[z]$ and for a given $n$ only a finite number of
nonzero $g_{n, m}$. Let $J$ be the kernel of $y : R_f[[x]] \to R_f[[x]]$.
We claim that $J \not = I R_f[[x]]$. Namely, if this were true then we
would have
$$
\sum z^{-n} a_n x^n = \sum\nolimits_{i = 1, \ldots, m} h_i g_i
$$
for some $m \geq 1$, $g_i \in I$, and $h_i \in R_f[[x]]$. Say
$h_i = \bar h_i \bmod (y, a_1, a_2, a_3, \ldots)$
with $\bar h_i \in k[z, 1/z][[x]]$. Looking at the coefficient of
$a_n$ and using the description of the elements $g_i$ above we would get
$$
z^{-n} x^n = \sum \bar h_i \bar g_{i, n}
$$
for some $\bar g_{i, n} \in k[z][[x]]$. This would mean that
all $z^{-n}x^n$ are contained in the finite $k[z][[x]]$-module
generated by the elements $\bar h_i$. Since $k[z][[x]]$ is Noetherian
this implies that the $R[z][[x]]$-submodule of $k[z, 1/z][[x]]$
generated by $1, z^{-1}x, z^{-2}x^2, \ldots$ is finite. By
Algebra, Lemma \ref{algebra-lemma-characterize-integral-element}
we would conclude that $z^{-1}x$ is integral over $k[z][[x]]$
which is absurd. On the other hand,
if (\ref{equation-nonflat}) were flat, then we would
get $J = IR_f[[x]]$ by tensoring the exact sequence
$0 \to I \to R[[x]] \xrightarrow{y} R[[x]]$ with $R_f[[x]]$.
\begin{lemma}
\label{lemma-nonflat-completion-localization}
There exists a ring $A$ complete with respect to a principal ideal $I$
and an element $f \in A$ such that the $I$-adic completion
$A_f^\wedge$ of $A_f$ is not flat over $A$.
\end{lemma}
\begin{proof}
Set $A = R[[x]]$ and $I = (x)$ and observe that $R_f[[x]]$
is the completion of $R[[x]]_f$.
\end{proof}
\section{Nonabelian category of quasi-coherent modules}
\label{section-nonabelian-QCoh}
\noindent
In Sheaves on Stacks, Section \ref{stacks-sheaves-section-quasi-coherent}
we defined the category of quasi-coherent modules on a category fibred in
groupoids over $\Sch$. Although we show in
Sheaves on Stacks, Section
\ref{stacks-sheaves-section-quasi-coherent-algebraic-stacks}
that this category is abelian for algebraic stacks, in this
section we show that this is not the case for formal algebraic spaces.
\medskip\noindent
Namely, consider $\mathbf{Z}_p$ viewed as topological ring using
the $p$-adic topology. Let $X = \text{Spf}(\mathbf{Z}_p)$, see
Formal Spaces, Definition
\ref{formal-spaces-definition-affine-formal-spectrum}.
Then $X$ is a sheaf in sets on $(\Sch/\mathbf{Z})_{fppf}$
and gives rise to a stack in setoids $\mathcal{X}$, see
Stacks, Lemma \ref{stacks-lemma-when-stack-in-sets}.
Thus the discussion of Sheaves on Stacks, Section
\ref{stacks-sheaves-section-quasi-coherent-algebraic-stacks}
applies.
\medskip\noindent
Let $\mathcal{F}$ be a quasi-coherent module on $\mathcal{X}$.
Since $X = \colim \Spec(\mathbf{Z}/p^n\mathbf{Z})$ it is clear from
Sheaves on Stacks, Lemma \ref{stacks-sheaves-lemma-quasi-coherent}
that $\mathcal{F}$ is given by a sequence $(\mathcal{F}_n)$ where
\begin{enumerate}
\item $\mathcal{F}_n$ is a quasi-coherent module on
$\Spec(\mathbf{Z}/p^n\mathbf{Z})$, and
\item the transition maps give isomorphisms
$\mathcal{F}_n = \mathcal{F}_{n + 1}/p^n\mathcal{F}_{n + 1}$.
\end{enumerate}
Converting into modules we see that $\mathcal{F}$ corresponds to a
system $(M_n)$ where each $M_n$ is an abelian group annihilated
by $p^n$ and the transition maps induce isomorphisms
$M_n = M_{n + 1}/p^n M_{n + 1}$. In this situation the module
$M = \lim M_n$ is a $p$-adically complete module and $M_n = M/p^n M$, see
Algebra, Lemma \ref{algebra-lemma-limit-complete}.
We conclude that the category of quasi-coherent modules on $X$
is equivalent to the category of $p$-adically complete
abelian groups. This category is not abelian, see
Section \ref{section-non-abelian}.
\begin{lemma}
\label{lemma-quasi-coherent-not-abelian}
The category of quasi-coherent\footnote{With quasi-coherent modules
as defined above. Due to how things are setup in the Stacks project,
this is really the correct definition; as seen above our definition
agrees with what one would naively have defined to be quasi-coherent modules
on $\text{Spf}(A)$, namely complete $A$-modules.}
modules on a formal algebraic space
$X$ is not abelian in general, even if $X$ is a Noetherian affine
formal algebraic space.
\end{lemma}
\begin{proof}
See discussion above.
\end{proof}
\section{Regular sequences and base change}
\label{section-regular-base-change}
\noindent
We are going to construct a ring $R$ with a regular sequence
$(x, y, z)$ such that there exists a nonzero element $\delta \in R/zR$
with $x\delta = y\delta = 0$.
\medskip\noindent
To construct our example we first
construct a peculiar module $E$ over the ring $k[x, y, z]$
where $k$ is any field. Namely, $E$ will be a push-out as
in the following diagram
$$
\xymatrix{
\frac{xk[x, y, z, y^{-1}]}{xyk[x, y, z]} \ar[r] \ar[d]^{z/x} &
\frac{k[x, y, z, x^{-1}, y^{-1}]}{yk[x, y, z, x^{-1}]} \ar[r] \ar[d] &
\frac{k[x, y, z, x^{-1}, y^{-1}]}{yk[x, y, z, x^{-1}] + xk[x, y, z, y^{-1}]}
\ar[d] \\
\frac{k[x, y, z, y^{-1}]}{yzk[x, y, z]} \ar[r] &
E \ar[r] &
\frac{k[x, y, z, x^{-1}, y^{-1}]}{yk[x, y, z, x^{-1}] + xk[x, y, z, y^{-1}]}
}
$$
where the rows are short exact sequences (we dropped the outer zeros due
to typesetting problems). Another way to describe $E$ is as
$$
E = \{(f, g) \mid f \in k[x, y, z, x^{-1}, y^{-1}],