forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
derham.tex
6135 lines (5638 loc) · 217 KB
/
derham.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here
%
\begin{document}
\title{de Rham Cohomology}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this chapter we start with a discussion of the de Rham complex
of a morphism of schemes and we end with a proof that de Rham cohomology
defines a Weil cohomology theory when the base field has characteristic zero.
\section{The de Rham complex}
\label{section-de-rham-complex}
\noindent
Let $p : X \to S$ be a morphism of schemes. There is a complex
$$
\Omega^\bullet_{X/S} =
\mathcal{O}_{X/S} \to \Omega^1_{X/S} \to \Omega^2_{X/S} \to \ldots
$$
of $p^{-1}\mathcal{O}_S$-modules with
$\Omega^i_{X/S} = \wedge^i(\Omega_{X/S})$
placed in degree $i$ and differential determined by the rule
$\text{d}(g_0 \text{d}g_1 \wedge \ldots \wedge \text{d}g_p) =
\text{d}g_0 \wedge \text{d}g_1 \wedge \ldots \wedge \text{d}g_p$
on local sections.
See Modules, Section \ref{modules-section-de-rham-complex}.
\medskip\noindent
Given a commutative diagram
$$
\xymatrix{
X' \ar[r]_f \ar[d] & X \ar[d] \\
S' \ar[r] & S
}
$$
of schemes, there are canonical maps of complexes
$f^{-1}\Omega_{X/S}^\bullet \to \Omega^\bullet_{X'/S'}$ and
$\Omega_{X/S}^\bullet \to f_*\Omega^\bullet_{X'/S'}$.
See Modules, Section \ref{modules-section-de-rham-complex}.
Linearizing, for every $p$ we obtain a linear map
$f^*\Omega^p_{X/S} \to \Omega^p_{X'/S'}$.
\medskip\noindent
In particular, if $f : Y \to X$ be a morphism of schemes over
a base scheme $S$, then there is a map of complexes
$$
\Omega^\bullet_{X/S} \longrightarrow f_*\Omega^\bullet_{Y/S}
$$
Linearizing, we see that for every $p \geq 0$ we obtain a canonical map
$$
\Omega^p_{X/S} \otimes_{\mathcal{O}_X} f_*\mathcal{O}_Y
\longrightarrow
f_*\Omega^p_{Y/S}
$$
\begin{lemma}
\label{lemma-base-change-de-rham}
Let
$$
\xymatrix{
X' \ar[r]_f \ar[d] & X \ar[d] \\
S' \ar[r] & S
}
$$
be a cartesian diagram of schemes. Then the maps discussed
above induce isomorphisms
$f^*\Omega^p_{X/S} \to \Omega^p_{X'/S'}$.
\end{lemma}
\begin{proof}
Combine Morphisms, Lemma \ref{morphisms-lemma-base-change-differentials}
with the fact that formation of exterior power commutes with base change.
\end{proof}
\begin{lemma}
\label{lemma-etale}
Consider a commutative diagram of schemes
$$
\xymatrix{
X' \ar[r]_f \ar[d] & X \ar[d] \\
S' \ar[r] & S
}
$$
If $X' \to X$ and $S' \to S$ are \'etale, then the maps discussed
above induce isomorphisms
$f^*\Omega^p_{X/S} \to \Omega^p_{X'/S'}$.
\end{lemma}
\begin{proof}
We have $\Omega_{S'/S} = 0$ and $\Omega_{X'/X} = 0$, see for example
Morphisms, Lemma \ref{morphisms-lemma-etale-at-point}. Then by
the short exact sequences of Morphisms, Lemmas
\ref{morphisms-lemma-triangle-differentials} and
\ref{morphisms-lemma-triangle-differentials-smooth}
we see that $\Omega_{X'/S'} = \Omega_{X'/S} = f^*\Omega_{X/S}$.
Taking exterior powers we conclude.
\end{proof}
\section{de Rham cohomology}
\label{section-de-rham-cohomology}
\noindent
Let $p : X \to S$ be a morphism of schemes. We define the
{\it de Rham cohomology of $X$ over $S$} to be the cohomology
groups
$$
H^i_{dR}(X/S) = H^i(R\Gamma(X, \Omega^\bullet_{X/S}))
$$
Since $\Omega^\bullet_{X/S}$ is a complex of $p^{-1}\mathcal{O}_S$-modules,
these cohomology groups are naturally modules over $H^0(S, \mathcal{O}_S)$.
\medskip\noindent
Given a commutative diagram
$$
\xymatrix{
X' \ar[r]_f \ar[d] & X \ar[d] \\
S' \ar[r] & S
}
$$
of schemes, using the canonical maps of Section \ref{section-de-rham-complex}
we obtain pullback maps
$$
f^* :
R\Gamma(X, \Omega^\bullet_{X/S})
\longrightarrow
R\Gamma(X', \Omega^\bullet_{X'/S'})
$$
and
$$
f^* : H^i_{dR}(X/S) \longrightarrow H^i_{dR}(X'/S')
$$
These pullbacks satisfy an obvious composition law.
In particular, if we work over a fixed base scheme $S$, then de Rham
cohomology is a contravariant functor on the category of schemes over $S$.
\begin{lemma}
\label{lemma-de-rham-affine}
Let $X \to S$ be a morphism of affine schemes given by the ring map
$R \to A$. Then $R\Gamma(X, \Omega^\bullet_{X/S}) = \Omega^\bullet_{A/R}$
in $D(R)$ and $H^i_{dR}(X/S) = H^i(\Omega^\bullet_{A/R})$.
\end{lemma}
\begin{proof}
This follows from Cohomology of Schemes, Lemma
\ref{coherent-lemma-quasi-coherent-affine-cohomology-zero}
and Leray's acyclicity lemma
(Derived Categories, Lemma \ref{derived-lemma-leray-acyclicity}).
\end{proof}
\begin{lemma}
\label{lemma-quasi-coherence-relative}
Let $p : X \to S$ be a morphism of schemes. If $p$ is quasi-compact
and quasi-separated, then $Rp_*\Omega^\bullet_{X/S}$ is an object
of $D_\QCoh(\mathcal{O}_S)$.
\end{lemma}
\begin{proof}
There is a spectral sequence with first page
$E_1^{a, b} = R^bp_*\Omega^a_{X/S}$ converging to
the cohomology of $Rp_*\Omega^\bullet_{X/S}$
(see Derived Categories, Lemma \ref{derived-lemma-two-ss-complex-functor}).
Hence by Homology, Lemma \ref{homology-lemma-first-quadrant-ss}
it suffices to show that $R^bp_*\Omega^a_{X/S}$ is quasi-coherent.
This follows from Cohomology of Schemes, Lemma
\ref{coherent-lemma-quasi-coherence-higher-direct-images}.
\end{proof}
\begin{lemma}
\label{lemma-coherence-relative}
Let $p : X \to S$ be a proper morphism of schemes with $S$ locally
Noetherian. Then $Rp_*\Omega^\bullet_{X/S}$ is an object
of $D_{\textit{Coh}}(\mathcal{O}_S)$.
\end{lemma}
\begin{proof}
In this case by Morphisms, Lemma \ref{morphisms-lemma-finite-type-differentials}
the modules $\Omega^i_{X/S}$ are coherent. Hence we can use exactly the
same argument as in the proof of Lemma \ref{lemma-quasi-coherence-relative}
using Cohomology of Schemes, Proposition
\ref{coherent-proposition-proper-pushforward-coherent}.
\end{proof}
\begin{lemma}
\label{lemma-finite-de-Rham}
Let $A$ be a Noetherian ring. Let $X$ be a proper scheme over $S = \Spec(A)$.
Then $H^i_{dR}(X/S)$ is a finite $A$-module for all $i$.
\end{lemma}
\begin{proof}
This is a special case of Lemma \ref{lemma-coherence-relative}.
\end{proof}
\begin{lemma}
\label{lemma-proper-smooth-de-Rham}
Let $f : X \to S$ be a proper smooth morphism of schemes. Then
$Rf_*\Omega^p_{X/S}$, $p \geq 0$ and $Rf_*\Omega^\bullet_{X/S}$ are
perfect objects of $D(\mathcal{O}_S)$ whose formation commutes
with arbitrary change of base.
\end{lemma}
\begin{proof}
Since $f$ is smooth the modules $\Omega^p_{X/S}$ are finite locally
free $\mathcal{O}_X$-modules, see Morphisms, Lemma
\ref{morphisms-lemma-smooth-omega-finite-locally-free}. Their
formation commutes with arbitrary change of base by
Lemma \ref{lemma-base-change-de-rham}. Hence
$Rf_*\Omega^p_{X/S}$ is a perfect object of $D(\mathcal{O}_S)$
whose formation commutes with abitrary base change, see
Derived Categories of Schemes, Lemma
\ref{perfect-lemma-flat-proper-perfect-direct-image-general}.
This proves the first assertion of the lemma.
\medskip\noindent
To prove that $Rf_*\Omega^\bullet_{X/S}$ is perfect on $S$ we may work
locally on $S$. Thus we may assume $S$ is quasi-compact. This means
we may assume that $\Omega^n_{X/S}$ is zero for $n$ large enough.
For every $p \geq 0$ we claim that
$Rf_*\sigma_{\geq p}\Omega^\bullet_{X/S}$ is a
perfect object of $D(\mathcal{O}_S)$ whose formation commutes
with arbitrary change of base. By the above we see that
this is true for $p \gg 0$. Suppose the claim holds for $p$
and consider the distinguished triangle
$$
\sigma_{\geq p}\Omega^\bullet_{X/S} \to
\sigma_{\geq p - 1}\Omega^\bullet_{X/S} \to
\Omega^{p - 1}_{X/S}[-(p - 1)] \to
(\sigma_{\geq p}\Omega^\bullet_{X/S})[1]
$$
in $D(f^{-1}\mathcal{O}_S)$.
Applying the exact functor $Rf_*$ we obtain a distinguished triangle
in $D(\mathcal{O}_S)$.
Since we have the 2-out-of-3 property for being perfect
(Cohomology, Lemma \ref{cohomology-lemma-two-out-of-three-perfect})
we conclude $Rf_*\sigma_{\geq p - 1}\Omega^\bullet_{X/S}$ is a
perfect object of $D(\mathcal{O}_S)$. Similarly for the
commutation with arbitrary base change.
\end{proof}
\section{Cup product}
\label{section-cup-product}
\noindent
Consider the maps
$\Omega^p_{X/S} \times \Omega^q_{X/S} \to \Omega^{p + q}_{X/S}$
given by $(\omega , \eta) \longmapsto \omega \wedge \eta$.
Using the formula for $\text{d}$ given in Section \ref{section-de-rham-complex}
and the Leibniz rule for $\text{d} : \mathcal{O}_X \to \Omega_{X/S}$
we see that $\text{d}(\omega \wedge \eta) = \text{d}(\omega) \wedge \eta +
(-1)^{\deg(\omega)} \omega \wedge \text{d}(\eta)$. This means that
$\wedge$ defines a morphism
\begin{equation}
\label{equation-wedge}
\wedge :
\text{Tot}(
\Omega^\bullet_{X/S} \otimes_{p^{-1}\mathcal{O}_S} \Omega^\bullet_{X/S})
\longrightarrow
\Omega^\bullet_{X/S}
\end{equation}
of complexes of $p^{-1}\mathcal{O}_S$-modules.
\medskip\noindent
Combining the cup product of
Cohomology, Section \ref{cohomology-section-cup-product}
with (\ref{equation-wedge}) we find a
$H^0(S, \mathcal{O}_S)$-bilinear cup product map
$$
\cup : H^i_{dR}(X/S) \times H^j_{dR}(X/S) \longrightarrow H^{i + j}_{dR}(X/S)
$$
For example, if $\omega \in \Gamma(X, \Omega^i_{X/S})$ and
$\eta \in \Gamma(X, \Omega^j_{X/S})$ are closed, then
the cup product of the de Rham cohomology classes of
$\omega$ and $\eta$ is the de Rham cohomology class of $\omega \wedge \eta$,
see discussion in Cohomology, Section \ref{cohomology-section-cup-product}.
\medskip\noindent
Given a commutative diagram
$$
\xymatrix{
X' \ar[r]_f \ar[d] & X \ar[d] \\
S' \ar[r] & S
}
$$
of schemes, the pullback maps
$f^* : R\Gamma(X, \Omega^\bullet_{X/S}) \to R\Gamma(X', \Omega^\bullet_{X'/S'})$
and
$f^* : H^i_{dR}(X/S) \longrightarrow H^i_{dR}(X'/S')$
are compatible with the cup product defined above.
\begin{lemma}
\label{lemma-cup-product-graded-commutative}
Let $p : X \to S$ be a morphism of schemes.
The cup product on $H^*_{dR}(X/S)$ is associative and
graded commutative.
\end{lemma}
\begin{proof}
This follows from
Cohomology, Lemmas \ref{cohomology-lemma-cup-product-associative} and
\ref{cohomology-lemma-cup-product-commutative}
and the fact that $\wedge$ is associative and graded commutative.
\end{proof}
\begin{remark}
\label{remark-relative-cup-product}
Let $p : X \to S$ be a morphism of schemes. Then we can think of
$\Omega^\bullet_{X/S}$ as a sheaf of differential graded
$p^{-1}\mathcal{O}_S$-algebras, see
Differential Graded Sheaves, Definition \ref{sdga-definition-dga}.
In particular, the discussion in
Differential Graded Sheaves, Section \ref{sdga-section-misc}
applies. For example, this means that for any commutative diagram
$$
\xymatrix{
X \ar[d]_p \ar[r]_f & Y \ar[d]^q \\
S \ar[r]^h & T
}
$$
of schemes there is a canonical relative cup product
$$
\mu :
Rf_*\Omega^\bullet_{X/S}
\otimes_{q^{-1}\mathcal{O}_T}^\mathbf{L}
Rf_*\Omega^\bullet_{X/S}
\longrightarrow
Rf_*\Omega^\bullet_{X/S}
$$
in $D(Y, q^{-1}\mathcal{O}_T)$ which is associative and
which on cohomology reproduces the cup product discussed above.
\end{remark}
\begin{remark}
\label{remark-cup-product-as-a-map}
Let $f : X \to S$ be a morphism of schemes. Let $\xi \in H_{dR}^n(X/S)$.
According to the discussion
Differential Graded Sheaves, Section \ref{sdga-section-misc}
there exists a canonical morphism
$$
\xi' : \Omega^\bullet_{X/S} \to \Omega^\bullet_{X/S}[n]
$$
in $D(f^{-1}\mathcal{O}_S)$ uniquely characterized by
(1) and (2) of the following list of properties:
\begin{enumerate}
\item $\xi'$ can be lifted to a map in the derived category of right
differential graded $\Omega^\bullet_{X/S}$-modules, and
\item $\xi'(1) = \xi$ in
$H^0(X, \Omega^\bullet_{X/S}[n]) = H^n_{dR}(X/S)$,
\item the map $\xi'$ sends $\eta \in H^m_{dR}(X/S)$
to $\xi \cup \eta$ in $H^{n + m}_{dR}(X/S)$,
\item the construction of $\xi'$ commutes with restrictions to
opens: for $U \subset X$ open the restriction $\xi'|_U$ is
the map corresponding to the image $\xi|_U \in H^n_{dR}(U/S)$,
\item for any diagram as in Remark \ref{remark-relative-cup-product}
we obtain a commutative diagram
$$
\xymatrix{
Rf_*\Omega^\bullet_{X/S}
\otimes_{q^{-1}\mathcal{O}_T}^\mathbf{L}
Rf_*\Omega^\bullet_{X/S} \ar[d]_{\xi' \otimes \text{id}}
\ar[r]_-\mu &
Rf_*\Omega^\bullet_{X/S} \ar[d]^{\xi'} \\
Rf_*\Omega^\bullet_{X/S}[n]
\otimes_{q^{-1}\mathcal{O}_T}^\mathbf{L}
Rf_*\Omega^\bullet_{X/S}
\ar[r]^-\mu &
Rf_*\Omega^\bullet_{X/S}[n]
}
$$
in $D(Y, q^{-1}\mathcal{O}_T)$.
\end{enumerate}
\end{remark}
\section{Hodge cohomology}
\label{section-hodge-cohomology}
\noindent
Let $p : X \to S$ be a morphism of schemes. We define the
{\it Hodge cohomology of $X$ over $S$} to be the cohomology groups
$$
H^n_{Hodge}(X/S) = \bigoplus\nolimits_{n = p + q} H^q(X, \Omega^p_{X/S})
$$
viewed as a graded $H^0(X, \mathcal{O}_X)$-module. The wedge product
of forms combined with the cup product of
Cohomology, Section \ref{cohomology-section-cup-product}
defines a $H^0(X, \mathcal{O}_X)$-bilinear cup product
$$
\cup :
H^i_{Hodge}(X/S) \times H^j_{Hodge}(X/S)
\longrightarrow
H^{i + j}_{Hodge}(X/S)
$$
Of course if $\xi \in H^q(X, \Omega^p_{X/S})$ and
$\xi' \in H^{q'}(X, \Omega^{p'}_{X/S})$ then $\xi \cup \xi' \in
H^{q + q'}(X, \Omega^{p + p'}_{X/S})$.
\begin{lemma}
\label{lemma-cup-product-hodge-graded-commutative}
Let $p : X \to S$ be a morphism of schemes.
The cup product on $H^*_{Hodge}(X/S)$ is associative and graded commutative.
\end{lemma}
\begin{proof}
The proof is identical to the proof of
Lemma \ref{lemma-cup-product-graded-commutative}.
\end{proof}
\noindent
Given a commutative diagram
$$
\xymatrix{
X' \ar[r]_f \ar[d] & X \ar[d] \\
S' \ar[r] & S
}
$$
of schemes, there are pullback maps
$f^* : H^i_{Hodge}(X/S) \longrightarrow H^i_{Hodge}(X'/S')$
compatible with gradings and with the cup product defined above.
\section{Two spectral sequences}
\label{section-hodge-to-de-rham}
\noindent
Let $p : X \to S$ be a morphism of schemes. Since the category
of $p^{-1}\mathcal{O}_S$-modules on $X$ has enough injectives
there exist a Cartan-Eilenberg resolution for $\Omega^\bullet_{X/S}$.
See Derived Categories, Lemma \ref{derived-lemma-cartan-eilenberg}.
Hence we can apply Derived Categories, Lemma
\ref{derived-lemma-two-ss-complex-functor} to get two spectral sequences
both converging to the de Rham cohomology of $X$ over $S$.
\medskip\noindent
The first is customarily called {\it the Hodge-to-de Rham spectral sequence}.
The first page of this spectral sequence has
$$
E_1^{p, q} = H^q(X, \Omega^p_{X/S})
$$
which are the Hodge cohomology groups of $X/S$ (whence the name). The
differential $d_1$ on this page is given by the maps
$d_1^{p, q} : H^q(X, \Omega^p_{X/S}) \to H^q(X. \Omega^{p + 1}_{X/S})$
induced by the differential
$\text{d} : \Omega^p_{X/S} \to \Omega^{p + 1}_{X/S}$.
Here is a picture
$$
\xymatrix{
H^2(X, \mathcal{O}_X) \ar[r] \ar@{-->}[rrd] \ar@{..>}[rrrdd] &
H^2(X, \Omega^1_{X/S}) \ar[r] \ar@{-->}[rrd] &
H^2(X, \Omega^2_{X/S}) \ar[r] &
H^2(X, \Omega^3_{X/S}) \\
H^1(X, \mathcal{O}_X) \ar[r] \ar@{-->}[rrd] &
H^1(X, \Omega^1_{X/S}) \ar[r] \ar@{-->}[rrd] &
H^1(X, \Omega^2_{X/S}) \ar[r] &
H^1(X, \Omega^3_{X/S}) \\
H^0(X, \mathcal{O}_X) \ar[r] &
H^0(X, \Omega^1_{X/S}) \ar[r] &
H^0(X, \Omega^2_{X/S}) \ar[r] &
H^0(X, \Omega^3_{X/S})
}
$$
where we have drawn striped arrows to indicate the source and target of
the differentials on the $E_2$ page and a dotted arrow for a differential
on the $E_3$ page. Looking in degree $0$ we conclude that
$$
H^0_{dR}(X/S) =
\Ker(\text{d} : H^0(X, \mathcal{O}_X) \to H^0(X, \Omega^1_{X/S}))
$$
Of course, this is also immediately clear from the fact that the
de Rham complex starts in degree $0$ with $\mathcal{O}_X \to \Omega^1_{X/S}$.
\medskip\noindent
The second spectral sequence is usually called
{\it the conjugate spectral sequence}. The second page of this
spectral sequence has
$$
E_2^{p, q} = H^p(X, H^q(\Omega^\bullet_{X/S})) = H^p(X, \mathcal{H}^q)
$$
where $\mathcal{H}^q = H^q(\Omega^\bullet_{X/S})$ is the $q$th
cohomology sheaf of the de Rham complex of $X/S$. The differentials
on this page are given by $E_2^{p, q} \to E_2^{p + 2, q - 1}$.
Here is a picture
$$
\xymatrix{
H^0(X, \mathcal{H}^2) \ar[rrd] \ar@{..>}[rrrdd] &
H^1(X, \mathcal{H}^2) \ar[rrd] &
H^2(X, \mathcal{H}^2) &
H^3(X, \mathcal{H}^2) \\
H^0(X, \mathcal{H}^1) \ar[rrd] &
H^1(X, \mathcal{H}^1) \ar[rrd] &
H^2(X, \mathcal{H}^1) &
H^3(X, \mathcal{H}^1) \\
H^0(X, \mathcal{H}^0) &
H^1(X, \mathcal{H}^0) &
H^2(X, \mathcal{H}^0) &
H^3(X, \mathcal{H}^0)
}
$$
Looking in degree $0$ we conclude that
$$
H^0_{dR}(X/S) = H^0(X, \mathcal{H}^0)
$$
which is obvious if you think about it. In degree $1$ we get an exact sequence
$$
0 \to H^1(X, \mathcal{H}^0) \to H^1_{dR}(X/S) \to
H^0(X, \mathcal{H}^1) \to H^2(X, \mathcal{H}^0) \to H^2_{dR}(X/S)
$$
It turns out that if $X \to S$ is smooth and $S$ lives in characteristic $p$,
then the sheaves $\mathcal{H}^q$ are computable (in terms of a certain
sheaves of differentials) and the conjugate spectral sequence is a valuable
tool (insert future reference here).
\section{The Hodge filtration}
\label{section-hodge-filtration}
\noindent
Let $X \to S$ be a morphism of schemes. The Hodge filtration on $H^n_{dR}(X/S)$
is the filtration induced by the Hodge-to-de Rham spectral sequence
(Homology, Definition
\ref{homology-definition-filtration-cohomology-filtered-complex}).
To avoid misunderstanding, we explicitly define it as follows.
\begin{definition}
\label{definition-hodge-filtration}
Let $X \to S$ be a morphism of schemes. The {\it Hodge filtration}
on $H^n_{dR}(X/S)$ is the filtration with terms
$$
F^pH^n_{dR}(X/S) = \Im\left(H^n(X, \sigma_{\geq p}\Omega^\bullet_{X/S})
\longrightarrow H^n_{dR}(X/S)\right)
$$
where $\sigma_{\geq p}\Omega^\bullet_{X/S}$ is as in
Homology, Section \ref{homology-section-truncations}.
\end{definition}
\noindent
Of course $\sigma_{\geq p}\Omega^\bullet_{X/S}$ is a subcomplex of
the relative de Rham complex and we obtain a filtration
$$
\Omega^\bullet_{X/S} = \sigma_{\geq 0}\Omega^\bullet_{X/S} \supset
\sigma_{\geq 1}\Omega^\bullet_{X/S} \supset
\sigma_{\geq 2}\Omega^\bullet_{X/S} \supset
\sigma_{\geq 3}\Omega^\bullet_{X/S} \supset \ldots
$$
of the relative de Rham complex with
$\text{gr}^p(\Omega^\bullet_{X/S}) = \Omega^p_{X/S}[-p]$.
The spectral sequence constructed in
Cohomology, Lemma \ref{cohomology-lemma-spectral-sequence-filtered-object}
for $\Omega^\bullet_{X/S}$ viewed as a filtered complex of sheaves
is the same as the Hodge-to-de Rham spectral sequence constructed in
Section \ref{section-hodge-to-de-rham} by
Cohomology, Example \ref{cohomology-example-spectral-sequence-bis}. Further the
wedge product (\ref{equation-wedge}) sends
$\text{Tot}(\sigma_{\geq i}\Omega^\bullet_{X/S} \otimes_{p^{-1}\mathcal{O}_S}
\sigma_{\geq j}\Omega^\bullet_{X/S})$ into
$\sigma_{\geq i + j}\Omega^\bullet_{X/S}$. Hence we get
commutative diagrams
$$
\xymatrix{
H^n(X, \sigma_{\geq j}\Omega^\bullet_{X/S}))
\times
H^m(X, \sigma_{\geq j}\Omega^\bullet_{X/S}))
\ar[r] \ar[d] &
H^{n + m}(X, \sigma_{\geq i + j}\Omega^\bullet_{X/S})) \ar[d] \\
H^n_{dR}(X/S) \times
H^m_{dR}(X/S)
\ar[r]^\cup &
H^{n + m}_{dR}(X/S)
}
$$
In particular we find that
$$
F^iH^n_{dR}(X/S) \cup F^jH^m_{dR}(X/S) \subset F^{i + j}H^{n + m}_{dR}(X/S)
$$
\section{K\"unneth formula}
\label{section-kunneth}
\noindent
An important feature of de Rham cohomology is that there is a
K\"unneth formula.
\medskip\noindent
Let $a : X \to S$ and $b : Y \to S$ be morphisms of schemes with the same
target. Let $p : X \times_S Y \to X$ and $q : X \times_S Y \to Y$ be the
projection morphisms and $f = a \circ p = b \circ q$. Here is a picture
$$
\xymatrix{
& X \times_S Y \ar[ld]^p \ar[rd]_q \ar[dd]^f \\
X \ar[rd]_a & & Y \ar[ld]^b \\
& S
}
$$
In this section, given an $\mathcal{O}_X$-module $\mathcal{F}$
and an $\mathcal{O}_Y$-module $\mathcal{G}$ let us set
$$
\mathcal{F} \boxtimes \mathcal{G} =
p^*\mathcal{F} \otimes_{\mathcal{O}_{X \times_S Y}} q^*\mathcal{G}
$$
The bifunctor
$(\mathcal{F}, \mathcal{G}) \mapsto \mathcal{F} \boxtimes \mathcal{G}$
on quasi-coherent modules extends to a bifunctor on quasi-coherent modules
and differential operators of finite over over $S$, see
Morphisms, Remark \ref{morphisms-remark-base-change-differential-operators}.
Since the differentials of the de Rham complexes $\Omega^\bullet_{X/S}$ and
$\Omega^\bullet_{Y/S}$ are differential operators of order $1$
over $S$ by Modules, Lemma
\ref{modules-lemma-differentials-relative-de-rham-complex-order-1}.
Thus it makes sense to consider the complex
$$
\text{Tot}(\Omega^\bullet_{X/S} \boxtimes \Omega^\bullet_{Y/S})
$$
Please see the discussion in Derived Categories of Schemes, Section
\ref{perfect-section-kunneth-complexes}.
\begin{lemma}
\label{lemma-de-rham-complex-product}
In the situation above there is a canonical isomorphism
$$
\text{Tot}(\Omega^\bullet_{X/S} \boxtimes \Omega^\bullet_{Y/S})
\longrightarrow
\Omega^\bullet_{X \times_S Y/S}
$$
of complexes of $f^{-1}\mathcal{O}_S$-modules.
\end{lemma}
\begin{proof}
We know that
$
\Omega_{X \times_S Y/S} = p^*\Omega_{X/S} \oplus q^*\Omega_{Y/S}
$
by Morphisms, Lemma \ref{morphisms-lemma-differential-product}.
Taking exterior powers we obtain
$$
\Omega^n_{X \times_S Y/S} =
\bigoplus\nolimits_{i + j = n}
p^*\Omega^i_{X/S} \otimes_{\mathcal{O}_{X \times_S Y}} q^*\Omega^j_{Y/S} =
\bigoplus\nolimits_{i + j = n}
\Omega^i_{X/S} \boxtimes \Omega^j_{Y/S}
$$
by elementary properties of exterior powers. These identifications determine
isomorphisms between the terms of the complexes on the left and the right
of the arrow in the lemma. We omit the verification that these maps
are compatible with differentials.
\end{proof}
\noindent
Set $A = \Gamma(S, \mathcal{O}_S)$. Combining the result of
Lemma \ref{lemma-de-rham-complex-product} with the map
Derived Categories of Schemes, Equation
(\ref{perfect-equation-de-rham-kunneth})
we obtain a cup product
$$
R\Gamma(X, \Omega^\bullet_{X/S})
\otimes_A^\mathbf{L}
R\Gamma(Y, \Omega^\bullet_{Y/S})
\longrightarrow
R\Gamma(X \times_S Y, \Omega^\bullet_{X \times_S Y/S})
$$
On the level of cohomology, using the discussion in
More on Algebra, Section \ref{more-algebra-section-products-tor},
we obtain a canonical map
$$
H^i_{dR}(X/S) \otimes_A H^j_{dR}(Y/S)
\longrightarrow
H^{i + j}_{dR}(X \times_S Y/S),\quad
(\xi, \zeta) \longmapsto p^*\xi \cup q^*\zeta
$$
We note that the construction above indeed proceeds by
first pulling back and then taking the cup product.
\begin{lemma}
\label{lemma-kunneth-de-rham}
Assume $X$ and $Y$ are smooth, quasi-compact, with affine diagonal over
$S = \Spec(A)$. Then the map
$$
R\Gamma(X, \Omega^\bullet_{X/S})
\otimes_A^\mathbf{L}
R\Gamma(Y, \Omega^\bullet_{Y/S})
\longrightarrow
R\Gamma(X \times_S Y, \Omega^\bullet_{X \times_S Y/S})
$$
is an isomorphism in $D(A)$.
\end{lemma}
\begin{proof}
By Morphisms, Lemma \ref{morphisms-lemma-smooth-omega-finite-locally-free}
the sheaves $\Omega^n_{X/S}$ and $\Omega^m_{Y/S}$ are finite locally free
$\mathcal{O}_X$ and $\mathcal{O}_Y$-modules. On the other hand, $X$ and $Y$
are flat over $S$ (Morphisms, Lemma \ref{morphisms-lemma-smooth-flat})
and hence we find that $\Omega^n_{X/S}$ and $\Omega^m_{Y/S}$ are flat over $S$.
Also, observe that $\Omega^\bullet_{X/S}$ is a locally bounded. Thus
the result by Lemma \ref{lemma-de-rham-complex-product} and
Derived Categories of Schemes, Lemma \ref{perfect-lemma-kunneth-special}.
\end{proof}
\noindent
There is a relative version of the cup product, namely a map
$$
Ra_*\Omega^\bullet_{X/S}
\otimes_{\mathcal{O}_S}^\mathbf{L}
Rb_*\Omega^\bullet_{Y/S}
\longrightarrow
Rf_*\Omega^\bullet_{X \times_S Y/S}
$$
in $D(\mathcal{O}_S)$. The construction combines
Lemma \ref{lemma-de-rham-complex-product} with the map
Derived Categories of Schemes, Equation
(\ref{perfect-equation-relative-de-rham-kunneth}).
The construction shows that this map is given by the diagram
$$
\xymatrix{
Ra_*\Omega^\bullet_{X/S}
\otimes_{\mathcal{O}_S}^\mathbf{L}
Rb_*\Omega^\bullet_{Y/S}
\ar[d]^{\text{units of adjunction}} \\
Rf_*(p^{-1}\Omega^\bullet_{X/S})
\otimes_{\mathcal{O}_S}^\mathbf{L}
Rf_*(q^{-1}\Omega^\bullet_{Y/S}) \ar[r] \ar[d]^{\text{relative cup product}} &
Rf_*(\Omega^\bullet_{X \times_S Y/S})
\otimes_{\mathcal{O}_S}^\mathbf{L}
Rf_*(\Omega^\bullet_{X \times_S Y/S}) \ar[d]^{\text{relative cup product}} \\
Rf_*(p^{-1}\Omega^\bullet_{X/S}
\otimes_{f^{-1}\mathcal{O}_S}^\mathbf{L}
q^{-1}\Omega^\bullet_{Y/S})
\ar[d]^{\text{from derived to usual}} \ar[r] &
Rf_*(\Omega^\bullet_{X \times_S Y/S}
\otimes_{f^{-1}\mathcal{O}_S}^\mathbf{L}
\Omega^\bullet_{X \times_S Y/S})
\ar[d]^{\text{from derived to usual}} \\
Rf_*\text{Tot}(p^{-1}\Omega^\bullet_{X/S}
\otimes_{f^{-1}\mathcal{O}_S}
q^{-1}\Omega^\bullet_{Y/S}) \ar[r] \ar[d]^{\text{canonical map}} &
Rf_*\text{Tot}(\Omega^\bullet_{X \times_S Y/S}
\otimes_{f^{-1}\mathcal{O}_S}
\Omega^\bullet_{X \times_S Y/S})
\ar[d]^{\eta \otimes \omega \mapsto \eta \wedge \omega} \\
Rf_*\text{Tot}(\Omega^\bullet_{X/S} \boxtimes \Omega^\bullet_{Y/S})
\ar@{=}[r]
&
Rf_*\Omega^\bullet_{X \times_S Y/S}
}
$$
Here the first arrow uses the units $\text{id} \to Rp_* p^{-1}$
and $\text{id} \to Rq_* q^{-1}$ of adjunction as well as the
identifications $Rf_* p^{-1} = Ra_* Rp_* p^{-1}$ and
$Rf_* q^{-1} = Rb_* Rq_* q^{-1}$.
The second arrow is the relative cup product of
Cohomology, Remark \ref{cohomology-remark-cup-product}.
The third arrow is the map sending a derived tensor product
of complexes to the totalization of the tensor product of complexes.
The final equality is Lemma \ref{lemma-de-rham-complex-product}.
This construction recovers on global section the construction given earlier.
\begin{lemma}
\label{lemma-kunneth-de-rham-relative}
Assume $X \to S$ and $Y \to S$ are smooth and quasi-compact
and the morphisms $X \to X \times_S X$ and $Y \to Y \times_S Y$ are affine.
Then the relative cup product
$$
Ra_*\Omega^\bullet_{X/S}
\otimes_{\mathcal{O}_S}^\mathbf{L}
Rb_*\Omega^\bullet_{Y/S}
\longrightarrow
Rf_*\Omega^\bullet_{X \times_S Y/S}
$$
is an isomorphism in $D(\mathcal{O}_S)$.
\end{lemma}
\begin{proof}
Immediate consequence of Lemma \ref{lemma-kunneth-de-rham}.
\end{proof}
\section{First Chern class in de Rham cohomology}
\label{section-first-chern-class}
\noindent
Let $X \to S$ be a morphism of schemes. There is a map of complexes
$$
\text{d}\log : \mathcal{O}_X^*[-1] \longrightarrow \Omega^\bullet_{X/S}
$$
which sends the section $g \in \mathcal{O}_X^*(U)$ to the section
$\text{d}\log(g) = g^{-1}\text{d}g$ of $\Omega^1_{X/S}(U)$.
Thus we can consider the map
$$
\Pic(X) = H^1(X, \mathcal{O}_X^*) =
H^2(X, \mathcal{O}_X^*[-1]) \longrightarrow H^2_{dR}(X/S)
$$
where the first equality is
Cohomology, Lemma \ref{cohomology-lemma-h1-invertible}.
The image of the isomorphism class of the invertible module
$\mathcal{L}$ is denoted $c^{dR}_1(\mathcal{L}) \in H^2_{dR}(X/S)$.
\medskip\noindent
We can also use the map $\text{d}\log : \mathcal{O}_X^* \to \Omega^1_{X/S}$
to define a Chern class in Hodge cohomology
$$
c_1^{Hodge} : \Pic(X) \longrightarrow H^1(X, \Omega^1_{X/S})
\subset H^2_{Hodge}(X/S)
$$
These constructions are compatible with pullbacks.
\begin{lemma}
\label{lemma-pullback-c1}
Given a commutative diagram
$$
\xymatrix{
X' \ar[r]_f \ar[d] & X \ar[d] \\
S' \ar[r] & S
}
$$
of schemes the diagrams
$$
\xymatrix{
\Pic(X') \ar[d]_{c_1^{dR}} &
\Pic(X) \ar[d]^{c_1^{dR}} \ar[l]^{f^*} \\
H^2_{dR}(X'/S') &
H^2_{dR}(X/S) \ar[l]_{f^*}
}
\quad
\xymatrix{
\Pic(X') \ar[d]_{c_1^{Hodge}} &
\Pic(X) \ar[d]^{c_1^{Hodge}} \ar[l]^{f^*} \\
H^1(X', \Omega^1_{X'/S'}) &
H^1(X, \Omega^1_{X/S}) \ar[l]_{f^*}
}
$$
commute.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\noindent
Let us ``compute'' the element $c^{dR}_1(\mathcal{L})$ in {\v C}ech
cohomology (with sign rules for {\v C}ech differentials
as in Cohomology, Section
\ref{cohomology-section-cech-cohomology-of-complexes}).
Namely, choose an open covering
$\mathcal{U} : X = \bigcup_{i \in I} U_i$ such that
we have a trivializing section $s_i$ of $\mathcal{L}|_{U_i}$ for all $i$.
On the overlaps $U_{i_0i_1} = U_{i_0} \cap U_{i_1}$
we have an invertible function $f_{i_0i_1}$ such that
$f_{i_0i_1} = s_{i_1}|_{U_{i_0i_1}} s_{i_0}|_{U_{i_0i_1}}^{-1}$\footnote{The
{\v C}ech differential of a $0$-cycle $\{a_{i_0}\}$ has
$a_{i_1} - a_{i_0}$ over $U_{i_0i_1}$.}.
Of course we have
$$
f_{i_1i_2}|_{U_{i_0i_1i_2}}
f_{i_0i_2}^{-1}|_{U_{i_0i_1i_2}}
f_{i_0i_1}|_{U_{i_0i_1i_2}} = 1
$$
The cohomology class of $\mathcal{L}$ in $H^1(X, \mathcal{O}_X^*)$ is
the image of the {\v C}ech cohomology class of the cocycle $\{f_{i_0i_1}\}$ in
$\check{\mathcal{C}}^\bullet(\mathcal{U}, \mathcal{O}_X^*)$.
Therefore we see that $c_1^{dR}(\mathcal{L})$ is the image
of the cohomology class associated to the {\v C}ech cocycle
$\{\alpha_{i_0 \ldots i_p}\}$ in
$\text{Tot}(\check{\mathcal{C}}^\bullet(\mathcal{U}, \Omega_{X/S}^\bullet))$
of degree $2$ given by
\begin{enumerate}
\item $\alpha_{i_0} = 0$ in $\Omega^2_{X/S}(U_{i_0})$,
\item $\alpha_{i_0i_1} = f_{i_0i_1}^{-1}\text{d}f_{i_0i_1}$ in
$\Omega^1_{X/S}(U_{i_0i_1})$, and
\item $\alpha_{i_0i_1i_2} = 0$ in $\mathcal{O}_{X/S}(U_{i_0i_1i_2})$.
\end{enumerate}
Suppose we have invertible modules $\mathcal{L}_k$, $k = 1, \ldots, a$
each trivialized over $U_i$ for all $i \in I$ giving rise to cocycles
$f_{k, i_0i_1}$ and $\alpha_k = \{\alpha_{k, i_0 \ldots i_p}\}$ as above.
Using the rule in
Cohomology, Section \ref{cohomology-section-cech-cohomology-of-complexes}
we can compute
$$
\beta = \alpha_1 \cup \alpha_2 \cup \ldots \cup \alpha_a
$$
to be given by the cocycle $\beta = \{\beta_{i_0 \ldots i_p}\}$
described as follows
\begin{enumerate}
\item $\beta_{i_0 \ldots i_p} = 0$ in
$\Omega^{2a - p}_{X/S}(U_{i_0 \ldots i_p})$ unless $p = a$, and
\item $\beta_{i_0 \ldots i_a} = (-1)^{a(a - 1)/2}
\alpha_{1, i_0i_1} \wedge \alpha_{2, i_1 i_2} \wedge \ldots \wedge
\alpha_{a, i_{a - 1}i_a}$ in
$\Omega^a_{X/S}(U_{i_0 \ldots i_a})$.
\end{enumerate}
Thus this is a cocycle representing
$c_1^{dR}(\mathcal{L}_1) \cup \ldots \cup c_1^{dR}(\mathcal{L}_a)$
Of course, the same computation shows that the cocycle
$\{\beta_{i_0 \ldots i_a}\}$ in
$\check{\mathcal{C}}^a(\mathcal{U}, \Omega_{X/S}^a))$
represents the cohomology class
$c_1^{Hodge}(\mathcal{L}_1) \cup \ldots \cup c_1^{Hodge}(\mathcal{L}_a)$
\begin{remark}
\label{remark-truncations}
Here is a reformulation of the calculations above in more abstract terms.
Let $p : X \to S$ be a morphism of schemes. Let $\mathcal{L}$ be an
invertible $\mathcal{O}_X$-module. If we view $\text{d}\log$ as a map
$$
\mathcal{O}_X^*[-1] \to \sigma_{\geq 1}\Omega^\bullet_{X/S}
$$
then using $\Pic(X) = H^1(X, \mathcal{O}_X^*)$ as above we find a
cohomology class
$$
\gamma_1(\mathcal{L}) \in H^2(X, \sigma_{\geq 1}\Omega^\bullet_{X/S})
$$
The image of $\gamma_1(\mathcal{L})$ under the map
$\sigma_{\geq 1}\Omega^\bullet_{X/S} \to \Omega^\bullet_{X/S}$
recovers $c_1^{dR}(\mathcal{L})$. In particular we see that
$c_1^{dR}(\mathcal{L}) \in F^1H^2_{dR}(X/S)$, see
Section \ref{section-hodge-filtration}. The image of $\gamma_1(\mathcal{L})$
under the map $\sigma_{\geq 1}\Omega^\bullet_{X/S} \to \Omega^1_{X/S}[-1]$
recovers $c_1^{Hodge}(\mathcal{L})$. Taking the cup product
(see Section \ref{section-hodge-filtration}) we obtain
$$
\xi = \gamma_1(\mathcal{L}_1) \cup \ldots \cup \gamma_1(\mathcal{L}_a) \in
H^{2a}(X, \sigma_{\geq a}\Omega^\bullet_{X/S})
$$
The commutative diagrams in Section \ref{section-hodge-filtration}
show that $\xi$ is mapped to
$c_1^{dR}(\mathcal{L}_1) \cup \ldots \cup c_1^{dR}(\mathcal{L}_a)$
in $H^{2a}_{dR}(X/S)$ by the map
$\sigma_{\geq a}\Omega^\bullet_{X/S} \to \Omega^\bullet_{X/S}$.
Also, it follows
$c_1^{dR}(\mathcal{L}_1) \cup \ldots \cup c_1^{dR}(\mathcal{L}_a)$
is contained in $F^a H^{2a}_{dR}(X/S)$. Similarly, the map
$\sigma_{\geq a}\Omega^\bullet_{X/S} \to \Omega^a_{X/S}[-a]$
sends $\xi$ to
$c_1^{Hodge}(\mathcal{L}_1) \cup \ldots \cup c_1^{Hodge}(\mathcal{L}_a)$
in $H^a(X, \Omega^a_{X/S})$.
\end{remark}
\begin{remark}
\label{remark-log-forms}
Let $p : X \to S$ be a morphism of schemes. For $i > 0$
denote $\Omega^i_{X/S, log} \subset \Omega^i_{X/S}$ the abelian subsheaf
generated by local sections of the form
$$
\text{d}\log(u_1) \wedge \ldots \wedge \text{d}\log(u_i)
$$
where $u_1, \ldots, u_n$ are invertible local sections of $\mathcal{O}_X$.
For $i = 0$ the subsheaf $\Omega^0_{X/S, log} \subset \mathcal{O}_X$
is the image of $\mathbf{Z} \to \mathcal{O}_X$. For every $i \geq 0$ we
have a map of complexes
$$
\Omega^i_{X/S, log}[-i] \longrightarrow \Omega^\bullet_{X/S}
$$
because the derivative of a logarithmic form is zero. Moreover, wedging
logarithmic forms gives another, hence we find bilinear maps
$$
\wedge : \Omega^i_{X/S, log} \times
\Omega^j_{X/S, log} \longrightarrow \Omega^{i + j}_{X/S, log}
$$
compatible with (\ref{equation-wedge}) and the maps above.
Let $\mathcal{L}$ be an invertible $\mathcal{O}_X$-module.
Using the map of abelian sheaves