forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
constructions.tex
5157 lines (4625 loc) · 181 KB
/
constructions.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Constructions of Schemes}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this chapter we introduce ways of constructing schemes out of others.
A basic reference is \cite{EGA}.
\section{Relative glueing}
\label{section-relative-glueing}
\noindent
The following lemma is relevant in case we are trying to construct a
scheme $X$ over $S$, and we already know how to construct the restriction
of $X$ to the affine opens of $S$. The actual result is completely general
and works in the setting of (locally) ringed spaces, although our proof
is written in the language of schemes.
\begin{lemma}
\label{lemma-relative-glueing}
Let $S$ be a scheme.
Let $\mathcal{B}$ be a basis for the topology of $S$.
Suppose given the following data:
\begin{enumerate}
\item For every $U \in \mathcal{B}$ a scheme $f_U : X_U \to U$ over $U$.
\item For $U, V \in \mathcal{B}$ with $V \subset U$ a morphism
$\rho^U_V : X_V \to X_U$ over $U$.
\end{enumerate}
Assume that
\begin{enumerate}
\item[(a)] each $\rho^U_V$ induces an isomorphism
$X_V \to f_U^{-1}(V)$ of schemes over $V$,
\item[(b)] whenever $W, V, U \in \mathcal{B}$, with
$W \subset V \subset U$ we have $\rho^U_W = \rho^U_V \circ \rho ^V_W$.
\end{enumerate}
Then there exists a morphism $f : X \to S$ of schemes
and isomorphisms $i_U : f^{-1}(U) \to X_U$ over $U \in \mathcal{B}$
such that for $V, U \in \mathcal{B}$ with $V \subset U$ the composition
$$
\xymatrix{
X_V \ar[r]^{i_V^{-1}} &
f^{-1}(V) \ar[rr]^{inclusion} & &
f^{-1}(U) \ar[r]^{i_U} &
X_U
}
$$
is the morphism $\rho^U_V$. Moreover $X$ is unique up to
unique isomorphism over $S$.
\end{lemma}
\begin{proof}
To prove this we will use Schemes, Lemma \ref{schemes-lemma-glue-functors}.
First we define a contravariant functor $F$ from the category of schemes
to the category of sets. Namely, for a scheme $T$ we set
$$
F(T) =
\left\{
\begin{matrix}
(g, \{h_U\}_{U \in \mathcal{B}}),
\ g : T \to S, \ h_U : g^{-1}(U) \to X_U, \\
f_U \circ h_U = g|_{g^{-1}(U)},
\ h_U|_{g^{-1}(V)} = \rho^U_V \circ h_V
\ \forall\ V, U \in \mathcal{B}, V \subset U
\end{matrix}
\right\}.
$$
The restriction mapping $F(T) \to F(T')$ given a morphism
$T' \to T$ is just gotten by composition.
For any $W \in \mathcal{B}$ we consider the subfunctor
$F_W \subset F$ consisting of those systems $(g, \{h_U\})$
such that $g(T) \subset W$.
\medskip\noindent
First we show $F$ satisfies the sheaf property for the Zariski topology.
Suppose that $T$ is a scheme, $T = \bigcup V_i$ is an open covering,
and $\xi_i \in F(V_i)$ is an element such that
$\xi_i|_{V_i \cap V_j} = \xi_j|_{V_i \cap V_j}$.
Say $\xi_i = (g_i, \{h_{i, U}\})$. Then we immediately see that
the morphisms $g_i$ glue to a unique global morphism
$g : T \to S$. Moreover, it is clear that
$g^{-1}(U) = \bigcup g_i^{-1}(U)$. Hence the morphisms
$h_{i, U} : g_i^{-1}(U) \to X_U$ glue to a unique morphism
$h_U : g^{-1}(U) \to X_U$. It is easy to verify that the system
$(g, \{h_U\})$ is an element of $F(T)$. Hence $F$ satisfies the
sheaf property for the Zariski topology.
\medskip\noindent
Next we verify that each $F_W$, $W \in \mathcal{B}$ is representable.
Namely, we claim that the transformation of functors
$$
F_W \longrightarrow \Mor(-, X_W), \ (g, \{h_U\}) \longmapsto h_W
$$
is an isomorphism. To see this suppose that $T$ is a scheme and
$\alpha : T \to X_W$ is a morphism. Set $g = f_W \circ \alpha$.
For any $U \in \mathcal{B}$ such that $U \subset W$ we can
define $h_U : g^{-1}(U) \to X_U$ be the composition
$(\rho^W_U)^{-1} \circ \alpha|_{g^{-1}(U)}$. This works because
the image $\alpha(g^{-1}(U))$ is contained in $f_W^{-1}(U)$ and
condition (a) of the lemma. It is clear that
$f_U \circ h_U = g|_{g^{-1}(U)}$ for such a $U$.
Moreover, if also $V \in \mathcal{B}$ and $V \subset U \subset W$,
then $\rho^U_V \circ h_V = h_U|_{g^{-1}(V)}$ by property (b)
of the lemma. We still have to define $h_U$ for an arbitrary
element $U \in \mathcal{B}$. Since $\mathcal{B}$ is a basis for
the topology on $S$ we can find an open covering
$U \cap W = \bigcup U_i$ with $U_i \in \mathcal{B}$. Since $g$ maps into $W$
we have
$g^{-1}(U) = g^{-1}(U \cap W) = \bigcup g^{-1}(U_i)$.
Consider the morphisms
$h_i = \rho^U_{U_i} \circ h_{U_i} : g^{-1}(U_i) \to X_U$.
It is a simple matter to use condition (b) of the lemma
to prove that
$h_i|_{g^{-1}(U_i) \cap g^{-1}(U_j)} = h_j|_{g^{-1}(U_i) \cap g^{-1}(U_j)}$.
Hence these morphisms glue to give the desired morphism
$h_U : g^{-1}(U) \to X_U$. We omit the (easy) verification that
the system $(g, \{h_U\})$ is an element of $F_W(T)$ which
maps to $\alpha$ under the displayed arrow above.
\medskip\noindent
Next, we verify each $F_W \subset F$ is representable by open immersions.
This is clear from the definitions.
\medskip\noindent
Finally we have to verify
the collection $(F_W)_{W \in \mathcal{B}}$ covers $F$.
This is clear by construction and the fact that $\mathcal{B}$ is
a basis for the topology of $S$.
\medskip\noindent
Let $X$ be a scheme representing the functor $F$.
Let $(f, \{i_U\}) \in F(X)$ be a ``universal family''.
Since each $F_W$ is representable by $X_W$ (via the morphism of functors
displayed above) we see that $i_W : f^{-1}(W) \to X_W$
is an isomorphism as desired. The lemma is proved.
\end{proof}
\begin{lemma}
\label{lemma-relative-glueing-sheaves}
Let $S$ be a scheme.
Let $\mathcal{B}$ be a basis for the topology of $S$.
Suppose given the following data:
\begin{enumerate}
\item For every $U \in \mathcal{B}$ a scheme $f_U : X_U \to U$ over $U$.
\item For every $U \in \mathcal{B}$ a quasi-coherent sheaf $\mathcal{F}_U$
over $X_U$.
\item For every pair $U, V \in \mathcal{B}$ such that
$V \subset U$ a morphism $\rho^U_V : X_V \to X_U$.
\item For every pair $U, V \in \mathcal{B}$ such that
$V \subset U$ a morphism
$\theta^U_V : (\rho^U_V)^*\mathcal{F}_U \to \mathcal{F}_V$.
\end{enumerate}
Assume that
\begin{enumerate}
\item[(a)] each $\rho^U_V$ induces an isomorphism
$X_V \to f_U^{-1}(V)$ of schemes over $V$,
\item[(b)] each $\theta^U_V$ is an isomorphism,
\item[(c)] whenever $W, V, U \in \mathcal{B}$, with
$W \subset V \subset U$ we have $\rho^U_W = \rho^U_V \circ \rho ^V_W$,
\item[(d)] whenever $W, V, U \in \mathcal{B}$, with
$W \subset V \subset U$ we have
$\theta^U_W = \theta^V_W \circ (\rho^V_W)^*\theta^U_V$.
\end{enumerate}
Then there exists a morphism of schemes $f : X \to S$
together with a quasi-coherent sheaf $\mathcal{F}$ on $X$
and isomorphisms $i_U : f^{-1}(U) \to X_U$ and
$\theta_U : i_U^*\mathcal{F}_U \to \mathcal{F}|_{f^{-1}(U)}$
over $U \in \mathcal{B}$ such that
for $V, U \in \mathcal{B}$ with $V \subset U$ the composition
$$
\xymatrix{
X_V \ar[r]^{i_V^{-1}} &
f^{-1}(V) \ar[rr]^{inclusion} & &
f^{-1}(U) \ar[r]^{i_U} &
X_U
}
$$
is the morphism $\rho^U_V$, and the composition
\begin{equation}
\label{equation-glue}
(\rho^U_V)^*\mathcal{F}_U
=
(i_V^{-1})^*((i_U^*\mathcal{F}_U)|_{f^{-1}(V)})
\xrightarrow{\theta_U|_{f^{-1}(V)}}
(i_V^{-1})^*(\mathcal{F}|_{f^{-1}(V)})
\xrightarrow{\theta_V^{-1}}
\mathcal{F}_V
\end{equation}
is equal to $\theta^U_V$. Moreover $(X, \mathcal{F})$ is unique
up to unique isomorphism over $S$.
\end{lemma}
\begin{proof}
By Lemma \ref{lemma-relative-glueing} we get the scheme $X$ over $S$
and the isomorphisms $i_U$.
Set $\mathcal{F}'_U = i_U^*\mathcal{F}_U$ for $U \in \mathcal{B}$.
This is a quasi-coherent $\mathcal{O}_{f^{-1}(U)}$-module.
The maps
$$
\mathcal{F}'_U|_{f^{-1}(V)} =
i_U^*\mathcal{F}_U|_{f^{-1}(V)} =
i_V^*(\rho^U_V)^*\mathcal{F}_U \xrightarrow{i_V^*\theta^U_V}
i_V^*\mathcal{F}_V = \mathcal{F}'_V
$$
define isomorphisms
$(\theta')^U_V : \mathcal{F}'_U|_{f^{-1}(V)} \to \mathcal{F}'_V$
whenever $V \subset U$ are elements of $\mathcal{B}$.
Condition (d) says exactly that this is compatible in case
we have a triple of elements $W \subset V \subset U$ of $\mathcal{B}$.
This allows us to get well defined isomorphisms
$$
\varphi_{12} :
\mathcal{F}'_{U_1}|_{f^{-1}(U_1 \cap U_2)}
\longrightarrow
\mathcal{F}'_{U_2}|_{f^{-1}(U_1 \cap U_2)}
$$
whenever $U_1, U_2 \in \mathcal{B}$ by covering the intersection
$U_1 \cap U_2 = \bigcup V_j$ by elements $V_j$ of $\mathcal{B}$
and taking
$$
\varphi_{12}|_{V_j} =
\left((\theta')^{U_2}_{V_j}\right)^{-1}
\circ
(\theta')^{U_1}_{V_j}.
$$
We omit the verification that these maps do indeed glue to a
$\varphi_{12}$ and we omit the verification of the
cocycle condition of a glueing datum for sheaves
(as in Sheaves, Section \ref{sheaves-section-glueing-sheaves}).
By Sheaves, Lemma \ref{sheaves-lemma-glue-sheaves}
we get our $\mathcal{F}$ on $X$. We omit the verification
of (\ref{equation-glue}).
\end{proof}
\begin{remark}
\label{remark-relative-glueing-functorial}
There is a functoriality property for the constructions explained
in Lemmas \ref{lemma-relative-glueing} and
\ref{lemma-relative-glueing-sheaves}. Namely, suppose given
two collections of data $(f_U : X_U \to U, \rho^U_V)$ and
$(g_U : Y_U \to U, \sigma^U_V)$ as in Lemma \ref{lemma-relative-glueing}.
Suppose for every $U \in \mathcal{B}$ given
a morphism $h_U : X_U \to Y_U$ over $U$ compatible with
the restrictions $\rho^U_V$ and $\sigma^U_V$. Functoriality
means that this gives rise to a morphism of schemes
$h : X \to Y$ over $S$ restricting back to the morphisms $h_U$,
where $f : X \to S$ is obtained from
the datum $(f_U : X_U \to U, \rho^U_V)$ and $g : Y \to S$
is obtained from the datum $(g_U : Y_U \to U, \sigma^U_V)$.
\medskip\noindent
Similarly, suppose given
two collections of data
$(f_U : X_U \to U, \mathcal{F}_U, \rho^U_V, \theta^U_V)$ and
$(g_U : Y_U \to U, \mathcal{G}_U, \sigma^U_V, \eta^U_V)$
as in Lemma \ref{lemma-relative-glueing-sheaves}.
Suppose for every $U \in \mathcal{B}$ given
a morphism $h_U : X_U \to Y_U$ over $U$ compatible with
the restrictions $\rho^U_V$ and $\sigma^U_V$, and a morphism
$\tau_U : h_U^*\mathcal{G}_U \to \mathcal{F}_U$ compatible with
the maps $\theta^U_V$ and $\eta^U_V$. Functoriality
means that these give rise to a morphism of schemes
$h : X \to Y$ over $S$ restricting back to the morphisms $h_U$,
and a morphism $h^*\mathcal{G} \to \mathcal{F}$ restricting back
to the maps $h_U$
where $(f : X \to S, \mathcal{F})$ is obtained from the datum
$(f_U : X_U \to U, \mathcal{F}_U, \rho^U_V, \theta^U_V)$ and
where $(g : Y \to S, \mathcal{G})$ is obtained from the datum
$(g_U : Y_U \to U, \mathcal{G}_U, \sigma^U_V, \eta^U_V)$.
\medskip\noindent
We omit the verifications and we omit a suitable formulation of
``equivalence of categories'' between relative glueing data
and relative objects.
\end{remark}
\section{Relative spectrum via glueing}
\label{section-spec-via-glueing}
\begin{situation}
\label{situation-relative-spec}
Here $S$ is a scheme, and $\mathcal{A}$ is a quasi-coherent
$\mathcal{O}_S$-algebra. This means that $\mathcal{A}$ is a
sheaf of $\mathcal{O}_S$-algebras which is quasi-coherent as an
$\mathcal{O}_S$-module.
\end{situation}
\noindent
In this section we outline how to construct a morphism
of schemes
$$
\underline{\Spec}_S(\mathcal{A}) \longrightarrow S
$$
by glueing the spectra $\Spec(\Gamma(U, \mathcal{A}))$
where $U$ ranges over the affine opens of $S$. We first show that the
spectra of the values of $\mathcal{A}$ over affines form a
suitable collection of schemes, as in Lemma \ref{lemma-relative-glueing}.
\begin{lemma}
\label{lemma-spec-inclusion}
In Situation \ref{situation-relative-spec}.
Suppose $U \subset U' \subset S$ are affine opens.
Let $A = \mathcal{A}(U)$ and $A' = \mathcal{A}(U')$.
The map of rings $A' \to A$ induces a morphism
$\Spec(A) \to \Spec(A')$, and the diagram
$$
\xymatrix{
\Spec(A) \ar[r] \ar[d] &
\Spec(A') \ar[d] \\
U \ar[r] &
U'
}
$$
is cartesian.
\end{lemma}
\begin{proof}
Let $R = \mathcal{O}_S(U)$ and $R' = \mathcal{O}_S(U')$.
Note that the map $R \otimes_{R'} A' \to A$ is an isomorphism as
$\mathcal{A}$ is quasi-coherent
(see Schemes, Lemma \ref{schemes-lemma-widetilde-pullback} for example).
The result follows from the description of the fibre product of
affine schemes in
Schemes, Lemma \ref{schemes-lemma-fibre-product-affine-schemes}.
\end{proof}
\noindent
In particular the morphism $\Spec(A) \to \Spec(A')$
of the lemma is an open immersion.
\begin{lemma}
\label{lemma-transitive-spec}
In Situation \ref{situation-relative-spec}.
Suppose $U \subset U' \subset U'' \subset S$ are affine opens.
Let $A = \mathcal{A}(U)$, $A' = \mathcal{A}(U')$ and $A'' = \mathcal{A}(U'')$.
The composition of the morphisms
$\Spec(A) \to \Spec(A')$, and
$\Spec(A') \to \Spec(A'')$ of
Lemma \ref{lemma-spec-inclusion} gives the
morphism $\Spec(A) \to \Spec(A'')$
of Lemma \ref{lemma-spec-inclusion}.
\end{lemma}
\begin{proof}
This follows as the map $A'' \to A$ is the composition of $A'' \to A'$ and
$A' \to A$ (because $\mathcal{A}$ is a sheaf).
\end{proof}
\begin{lemma}
\label{lemma-glue-relative-spec}
In Situation \ref{situation-relative-spec}.
There exists a morphism of schemes
$$
\pi : \underline{\Spec}_S(\mathcal{A}) \longrightarrow S
$$
with the following properties:
\begin{enumerate}
\item for every affine open $U \subset S$ there exists an isomorphism
$i_U : \pi^{-1}(U) \to \Spec(\mathcal{A}(U))$, and
\item for $U \subset U' \subset S$ affine open the composition
$$
\xymatrix{
\Spec(\mathcal{A}(U)) \ar[r]^{i_U^{-1}} &
\pi^{-1}(U) \ar[rr]^{inclusion} & &
\pi^{-1}(U') \ar[r]^{i_{U'}} &
\Spec(\mathcal{A}(U'))
}
$$
is the open immersion of Lemma \ref{lemma-spec-inclusion} above.
\end{enumerate}
\end{lemma}
\begin{proof}
Follows immediately from
Lemmas \ref{lemma-relative-glueing},
\ref{lemma-spec-inclusion}, and
\ref{lemma-transitive-spec}.
\end{proof}
\section{Relative spectrum as a functor}
\label{section-spec}
\noindent
We place ourselves in Situation \ref{situation-relative-spec}, i.e.,
$S$ is a scheme and $\mathcal{A}$ is a quasi-coherent sheaf of
$\mathcal{O}_S$-algebras.
\medskip\noindent
For any $f : T \to S$ the pullback
$f^*\mathcal{A}$ is a quasi-coherent sheaf of $\mathcal{O}_T$-algebras.
We are going to consider pairs $(f : T \to S, \varphi)$ where
$f$ is a morphism of schemes and $\varphi : f^*\mathcal{A} \to \mathcal{O}_T$
is a morphism of $\mathcal{O}_T$-algebras. Note that this is the
same as giving a $f^{-1}\mathcal{O}_S$-algebra homomorphism
$\varphi : f^{-1}\mathcal{A} \to \mathcal{O}_T$, see
Sheaves, Lemma \ref{sheaves-lemma-adjointness-tensor-restrict}.
This is also the same as giving an $\mathcal{O}_S$-algebra map
$\varphi : \mathcal{A} \to f_*\mathcal{O}_T$, see
Sheaves, Lemma \ref{sheaves-lemma-adjoint-push-pull-modules}.
We will use all three ways of thinking about $\varphi$,
without further mention.
\medskip\noindent
Given such a
pair $(f : T \to S, \varphi)$ and a morphism $a : T' \to T$ we get
a second pair $(f' = f \circ a, \varphi' = a^*\varphi)$ which we
call the pullback of $(f, \varphi)$. One way to describe
$\varphi' = a^*\varphi$ is as the composition
$\mathcal{A} \to f_*\mathcal{O}_T \to f'_*\mathcal{O}_{T'}$
where the second map is $f_*a^\sharp$ with
$a^\sharp : \mathcal{O}_T \to a_*\mathcal{O}_{T'}$.
In this way we have defined a functor
\begin{eqnarray}
\label{equation-spec}
F : \Sch^{opp} & \longrightarrow & \textit{Sets} \\
T & \longmapsto & F(T) = \{\text{pairs }(f, \varphi) \text{ as above}\}
\nonumber
\end{eqnarray}
\begin{lemma}
\label{lemma-spec-base-change}
In Situation \ref{situation-relative-spec}.
Let $F$ be the functor
associated to $(S, \mathcal{A})$ above.
Let $g : S' \to S$ be a morphism of schemes.
Set $\mathcal{A}' = g^*\mathcal{A}$. Let $F'$ be the
functor associated to $(S', \mathcal{A}')$ above.
Then there is a canonical isomorphism
$$
F' \cong h_{S'} \times_{h_S} F
$$
of functors.
\end{lemma}
\begin{proof}
A pair $(f' : T \to S', \varphi' : (f')^*\mathcal{A}' \to \mathcal{O}_T)$
is the same as a pair $(f, \varphi : f^*\mathcal{A} \to \mathcal{O}_T)$
together with a factorization of $f$ as $f = g \circ f'$. Namely with
this notation we have
$(f')^* \mathcal{A}' = (f')^*g^*\mathcal{A} = f^*\mathcal{A}$.
Hence the lemma.
\end{proof}
\begin{lemma}
\label{lemma-spec-affine}
In Situation \ref{situation-relative-spec}.
Let $F$ be the functor associated to $(S, \mathcal{A})$ above.
If $S$ is affine, then $F$ is representable by the
affine scheme $\Spec(\Gamma(S, \mathcal{A}))$.
\end{lemma}
\begin{proof}
Write $S = \Spec(R)$ and $A = \Gamma(S, \mathcal{A})$.
Then $A$ is an $R$-algebra and $\mathcal{A} = \widetilde A$.
The ring map $R \to A$ gives rise to a canonical map
$$
f_{univ} : \Spec(A)
\longrightarrow
S = \Spec(R).
$$
We have
$f_{univ}^*\mathcal{A} = \widetilde{A \otimes_R A}$
by Schemes, Lemma \ref{schemes-lemma-widetilde-pullback}.
Hence there is a canonical map
$$
\varphi_{univ} :
f_{univ}^*\mathcal{A} = \widetilde{A \otimes_R A}
\longrightarrow
\widetilde A = \mathcal{O}_{\Spec(A)}
$$
coming from the $A$-module map $A \otimes_R A \to A$,
$a \otimes a' \mapsto aa'$. We claim that the pair
$(f_{univ}, \varphi_{univ})$ represents $F$ in this case.
In other words we claim that for any scheme $T$ the map
$$
\Mor(T, \Spec(A)) \longrightarrow \{\text{pairs } (f, \varphi)\},\quad
a \longmapsto (f_{univ} \circ a, a^*\varphi_{univ})
$$
is bijective.
\medskip\noindent
Let us construct the inverse map.
For any pair $(f : T \to S, \varphi)$ we get the induced
ring map
$$
\xymatrix{
A = \Gamma(S, \mathcal{A}) \ar[r]^{f^*} &
\Gamma(T, f^*\mathcal{A}) \ar[r]^{\varphi} &
\Gamma(T, \mathcal{O}_T)
}
$$
This induces a morphism of schemes $T \to \Spec(A)$
by Schemes, Lemma \ref{schemes-lemma-morphism-into-affine}.
\medskip\noindent
The verification that this map is inverse to the map
displayed above is omitted.
\end{proof}
\begin{lemma}
\label{lemma-spec}
In Situation \ref{situation-relative-spec}.
The functor $F$ is representable by a scheme.
\end{lemma}
\begin{proof}
We are going to use Schemes, Lemma \ref{schemes-lemma-glue-functors}.
\medskip\noindent
First we check that $F$ satisfies the sheaf property for the
Zariski topology. Namely, suppose that $T$ is a scheme,
that $T = \bigcup_{i \in I} U_i$ is an open covering,
and that $(f_i, \varphi_i) \in F(U_i)$ such that
$(f_i, \varphi_i)|_{U_i \cap U_j} = (f_j, \varphi_j)|_{U_i \cap U_j}$.
This implies that the morphisms $f_i : U_i \to S$
glue to a morphism of schemes $f : T \to S$ such that
$f|_{I_i} = f_i$, see Schemes, Section \ref{schemes-section-glueing-schemes}.
Thus $f_i^*\mathcal{A} = f^*\mathcal{A}|_{U_i}$ and by assumption the
morphisms $\varphi_i$ agree on $U_i \cap U_j$. Hence by Sheaves,
Section \ref{sheaves-section-glueing-sheaves} these glue to a
morphism of $\mathcal{O}_T$-algebras $f^*\mathcal{A} \to \mathcal{O}_T$.
This proves that $F$ satisfies the sheaf condition with respect to
the Zariski topology.
\medskip\noindent
Let $S = \bigcup_{i \in I} U_i$ be an affine open covering.
Let $F_i \subset F$ be the subfunctor consisting of
those pairs $(f : T \to S, \varphi)$ such that
$f(T) \subset U_i$.
\medskip\noindent
We have to show each $F_i$ is representable.
This is the case because $F_i$ is identified with
the functor associated to $U_i$ equipped with
the quasi-coherent $\mathcal{O}_{U_i}$-algebra $\mathcal{A}|_{U_i}$,
by Lemma \ref{lemma-spec-base-change}.
Thus the result follows from Lemma \ref{lemma-spec-affine}.
\medskip\noindent
Next we show that $F_i \subset F$ is representable by open immersions.
Let $(f : T \to S, \varphi) \in F(T)$. Consider $V_i = f^{-1}(U_i)$.
It follows from the definition of $F_i$ that given $a : T' \to T$
we gave $a^*(f, \varphi) \in F_i(T')$ if and only if $a(T') \subset V_i$.
This is what we were required to show.
\medskip\noindent
Finally, we have to show that the collection $(F_i)_{i \in I}$
covers $F$. Let $(f : T \to S, \varphi) \in F(T)$.
Consider $V_i = f^{-1}(U_i)$. Since $S = \bigcup_{i \in I} U_i$
is an open covering of $S$ we see that $T = \bigcup_{i \in I} V_i$
is an open covering of $T$. Moreover $(f, \varphi)|_{V_i} \in F_i(V_i)$.
This finishes the proof of the lemma.
\end{proof}
\begin{lemma}
\label{lemma-glueing-gives-functor-spec}
In Situation \ref{situation-relative-spec}.
The scheme $\pi : \underline{\Spec}_S(\mathcal{A}) \to S$
constructed in Lemma \ref{lemma-glue-relative-spec}
and the scheme representing the functor $F$ are
canonically isomorphic as schemes over $S$.
\end{lemma}
\begin{proof}
Let $X \to S$ be the scheme representing the functor $F$.
Consider the sheaf of $\mathcal{O}_S$-algebras
$\mathcal{R} = \pi_*\mathcal{O}_{\underline{\Spec}_S(\mathcal{A})}$.
By construction of $\underline{\Spec}_S(\mathcal{A})$
we have isomorphisms $\mathcal{A}(U) \to \mathcal{R}(U)$
for every affine open $U \subset S$; this follows from
Lemma \ref{lemma-glue-relative-spec} part (1).
For $U \subset U' \subset S$ open these isomorphisms are
compatible with the restriction mappings; this follows from
Lemma \ref{lemma-glue-relative-spec} part (2).
Hence by Sheaves, Lemma \ref{sheaves-lemma-restrict-basis-equivalence-modules}
these isomorphisms result from an isomorphism of $\mathcal{O}_S$-algebras
$\varphi : \mathcal{A} \to \mathcal{R}$. Hence this gives an element
$(\underline{\Spec}_S(\mathcal{A}), \varphi)
\in F(\underline{\Spec}_S(\mathcal{A}))$.
Since $X$ represents the functor $F$ we get a corresponding
morphism of schemes $can : \underline{\Spec}_S(\mathcal{A}) \to X$
over $S$.
\medskip\noindent
Let $U \subset S$ be any affine open. Let $F_U \subset F$ be
the subfunctor of $F$ corresponding to pairs $(f, \varphi)$ over
schemes $T$ with $f(T) \subset U$. Clearly the base change
$X_U$ represents $F_U$. Moreover, $F_U$ is represented by
$\Spec(\mathcal{A}(U)) = \pi^{-1}(U)$ according to
Lemma \ref{lemma-spec-affine}. In other words $X_U \cong \pi^{-1}(U)$.
We omit the verification that this identification is brought about
by the base change of the morphism $can$ to $U$.
\end{proof}
\begin{definition}
\label{definition-relative-spec}
Let $S$ be a scheme. Let $\mathcal{A}$ be a quasi-coherent sheaf of
$\mathcal{O}_S$-algebras. The {\it relative spectrum of $\mathcal{A}$ over
$S$}, or simply the {\it spectrum of $\mathcal{A}$ over $S$} is the scheme
constructed in Lemma \ref{lemma-glue-relative-spec} which represents the
functor $F$ (\ref{equation-spec}), see
Lemma \ref{lemma-glueing-gives-functor-spec}.
We denote it $\pi : \underline{\Spec}_S(\mathcal{A}) \to S$.
The ``universal family'' is a morphism of $\mathcal{O}_S$-algebras
$$
\mathcal{A}
\longrightarrow
\pi_*\mathcal{O}_{\underline{\Spec}_S(\mathcal{A})}
$$
\end{definition}
\noindent
The following lemma says among other things that forming the
relative spectrum commutes with base change.
\begin{lemma}
\label{lemma-spec-properties}
Let $S$ be a scheme. Let $\mathcal{A}$ be a quasi-coherent
sheaf of $\mathcal{O}_S$-algebras. Let
$\pi : \underline{\Spec}_S(\mathcal{A}) \to S$
be the relative spectrum of $\mathcal{A}$ over $S$.
\begin{enumerate}
\item For every affine open $U \subset S$ the inverse image
$\pi^{-1}(U)$ is affine.
\item For every morphism $g : S' \to S$ we have
$S' \times_S \underline{\Spec}_S(\mathcal{A}) =
\underline{\Spec}_{S'}(g^*\mathcal{A})$.
\item
The universal map
$$
\mathcal{A}
\longrightarrow
\pi_*\mathcal{O}_{\underline{\Spec}_S(\mathcal{A})}
$$
is an isomorphism of $\mathcal{O}_S$-algebras.
\end{enumerate}
\end{lemma}
\begin{proof}
Part (1) comes from the description of the relative spectrum
by glueing, see Lemma \ref{lemma-glue-relative-spec}.
Part (2) follows immediately from Lemma \ref{lemma-spec-base-change}.
Part (3) follows because it is local on $S$ and it is clear in case $S$
is affine by Lemma \ref{lemma-spec-affine} for example.
\end{proof}
\begin{lemma}
\label{lemma-canonical-morphism}
Let $f : X \to S$ be a quasi-compact and quasi-separated morphism
of schemes. By Schemes, Lemma \ref{schemes-lemma-push-forward-quasi-coherent}
the sheaf $f_*\mathcal{O}_X$ is a quasi-coherent sheaf of
$\mathcal{O}_S$-algebras. There is a canonical morphism
$$
can : X \longrightarrow \underline{\Spec}_S(f_*\mathcal{O}_X)
$$
of schemes over $S$.
For any affine open $U \subset S$ the restriction $can|_{f^{-1}(U)}$
is identified with the canonical morphism
$$
f^{-1}(U) \longrightarrow \Spec(\Gamma(f^{-1}(U), \mathcal{O}_X))
$$
coming from Schemes, Lemma \ref{schemes-lemma-morphism-into-affine}.
\end{lemma}
\begin{proof}
The morphism comes, via the definition of $\underline{\Spec}$
as the scheme representing the functor $F$, from the canonical map
$\varphi : f^*f_*\mathcal{O}_X \to \mathcal{O}_X$ (which by adjointness of
push and pull corresponds to
$\text{id} : f_*\mathcal{O}_X \to f_*\mathcal{O}_X$).
The statement on the restriction to $f^{-1}(U)$
follows from the description of the relative spectrum over
affines, see Lemma \ref{lemma-spec-affine}.
\end{proof}
\section{Affine n-space}
\label{section-affine-n-space}
\noindent
As an application of the relative spectrum
we define affine $n$-space over a base scheme
$S$ as follows. For any integer $n \geq 0$ we can consider the
quasi-coherent sheaf of $\mathcal{O}_S$-algebras
$\mathcal{O}_S[T_1, \ldots, T_n]$. It is quasi-coherent because
as a sheaf of $\mathcal{O}_S$-modules it is just the direct sum
of copies of $\mathcal{O}_S$ indexed by multi-indices.
\begin{definition}
\label{definition-affine-n-space}
Let $S$ be a scheme and $n \geq 0$.
The scheme
$$
\mathbf{A}^n_S =
\underline{\Spec}_S(\mathcal{O}_S[T_1, \ldots, T_n])
$$
over $S$ is called {\it affine $n$-space over $S$}.
If $S = \Spec(R)$ is affine then we also call this
{\it affine $n$-space over $R$} and we denote it $\mathbf{A}^n_R$.
\end{definition}
\noindent
Note that $\mathbf{A}^n_R = \Spec(R[T_1, \ldots, T_n])$.
For any morphism $g : S' \to S$ of schemes we have
$g^*\mathcal{O}_S[T_1, \ldots, T_n] = \mathcal{O}_{S'}[T_1, \ldots, T_n]$
and hence $\mathbf{A}^n_{S'} = S' \times_S \mathbf{A}^n_S$ is the base
change. Therefore an alternative definition of affine $n$-space
is the formula
$$
\mathbf{A}^n_S = S \times_{\Spec(\mathbf{Z})} \mathbf{A}^n_{\mathbf{Z}}.
$$
Also, a morphism from an $S$-scheme $f : X \to S$
to $\mathbf{A}^n_S$ is given by a homomorphism of
$\mathcal{O}_S$-algebras
$\mathcal{O}_S[T_1, \ldots, T_n] \to f_*\mathcal{O}_X$.
This is clearly the same thing as giving the images of the $T_i$.
In other words, a morphism from $X$ to $\mathbf{A}^n_S$ over $S$
is the same as giving $n$ elements
$h_1, \ldots, h_n \in \Gamma(X, \mathcal{O}_X)$.
\section{Vector bundles}
\label{section-vector-bundle}
\noindent
Let $S$ be a scheme.
Let $\mathcal{E}$ be a quasi-coherent sheaf of $\mathcal{O}_S$-modules.
By Modules, Lemma \ref{modules-lemma-whole-tensor-algebra-permanence}
the symmetric algebra $\text{Sym}(\mathcal{E})$ of
$\mathcal{E}$ over $\mathcal{O}_S$
is a quasi-coherent sheaf of $\mathcal{O}_S$-algebras.
Hence it makes sense to apply the construction of the
previous section to it.
\begin{definition}
\label{definition-vector-bundle}
Let $S$ be a scheme. Let $\mathcal{E}$ be a quasi-coherent
$\mathcal{O}_S$-module\footnote{The reader may expect here
the condition that $\mathcal{E}$ is finite locally free. We do not
do so in order to be consistent with \cite[II, Definition 1.7.8]{EGA}.}.
The {\it vector bundle associated to $\mathcal{E}$} is
$$
\mathbf{V}(\mathcal{E}) = \underline{\Spec}_S(\text{Sym}(\mathcal{E})).
$$
\end{definition}
\noindent
The vector bundle associated to $\mathcal{E}$ comes with a bit
of extra structure. Namely, we have a grading
$$
\pi_*\mathcal{O}_{\mathbf{V}(\mathcal{E})} =
\bigoplus\nolimits_{n \geq 0} \text{Sym}^n(\mathcal{E}).
$$
which turns $\pi_*\mathcal{O}_{\mathbf{V}(\mathcal{E})}$
into a graded $\mathcal{O}_S$-algebra. Conversely, we can recover
$\mathcal{E}$ from the degree $1$ part of this.
Thus we define an abstract vector bundle as follows.
\begin{definition}
\label{definition-abstract-vector-bundle}
Let $S$ be a scheme. A {\it vector bundle $\pi : V \to S$ over $S$} is an
affine morphism of schemes such that $\pi_*\mathcal{O}_V$ is endowed with
the structure of a graded $\mathcal{O}_S$-algebra
$\pi_*\mathcal{O}_V = \bigoplus\nolimits_{n \geq 0} \mathcal{E}_n$
such that $\mathcal{E}_0 = \mathcal{O}_S$ and such that the maps
$$
\text{Sym}^n(\mathcal{E}_1) \longrightarrow \mathcal{E}_n
$$
are isomorphisms for all $n \geq 0$. A {\it morphism of vector bundles
over $S$} is a morphism $f : V \to V'$ such that the induced map
$$
f^* : \pi'_*\mathcal{O}_{V'} \longrightarrow \pi_*\mathcal{O}_V
$$
is compatible with the given gradings.
\end{definition}
\noindent
An example of a vector bundle over $S$ is affine $n$-space
$\mathbf{A}^n_S$ over $S$, see Definition \ref{definition-affine-n-space}.
This is true because
$\mathcal{O}_S[T_1, \ldots, T_n] = \text{Sym}(\mathcal{O}_S^{\oplus n})$.
\begin{lemma}
\label{lemma-category-vector-bundles}
The category of vector bundles over a scheme $S$ is
anti-equivalent to the category of quasi-coherent $\mathcal{O}_S$-modules.
\end{lemma}
\begin{proof}
Omitted. Hint: In one direction one uses the functor
$\underline{\Spec}_S(\text{Sym}^*_{\mathcal{O}_S}(-))$
and in the other the functor
$(\pi : V \to S) \leadsto (\pi_*\mathcal{O}_V)_1$ where the subscript
indicates we take the degree $1$ part.
\end{proof}
\section{Cones}
\label{section-cone}
\noindent
In algebraic geometry cones correspond to graded algebras. By our conventions
a graded ring or algebra $A$ comes with a grading
$A = \bigoplus_{d \geq 0} A_d$ by the nonnegative integers, see
Algebra, Section \ref{algebra-section-graded}.
\begin{definition}
\label{definition-cone}
Let $S$ be a scheme. Let $\mathcal{A}$ be a quasi-coherent
graded $\mathcal{O}_S$-algebra. Assume that $\mathcal{O}_S \to \mathcal{A}_0$
is an isomorphism\footnote{Often one imposes the assumption that
$\mathcal{A}$ is generated by $\mathcal{A}_1$ over $\mathcal{O}_S$. We do not
assume this in order to be consistent with \cite[II, (8.3.1)]{EGA}.}.
The {\it cone associated to $\mathcal{A}$} or the
{\it affine cone associated to $\mathcal{A}$}
is
$$
C(\mathcal{A}) = \underline{\Spec}_S(\mathcal{A}).
$$
\end{definition}
\noindent
The cone associated to a graded sheaf of $\mathcal{O}_S$-algebras
comes with a bit of extra structure. Namely, we obtain a grading
$$
\pi_*\mathcal{O}_{C(\mathcal{A})} =
\bigoplus\nolimits_{n \geq 0} \mathcal{A}_n
$$
Thus we can define an abstract cone as follows.
\begin{definition}
\label{definition-abstract-cone}
Let $S$ be a scheme. A {\it cone $\pi : C \to S$ over $S$} is an
affine morphism of schemes such that $\pi_*\mathcal{O}_C$ is endowed with
the structure of a graded $\mathcal{O}_S$-algebra
$\pi_*\mathcal{O}_C = \bigoplus\nolimits_{n \geq 0} \mathcal{A}_n$
such that $\mathcal{A}_0 = \mathcal{O}_S$. A {\it morphism of cones}
from $\pi : C \to S$ to $\pi' : C' \to S$
is a morphism $f : C \to C'$ such that the induced map
$$
f^* : \pi'_*\mathcal{O}_{C'} \longrightarrow \pi_*\mathcal{O}_C
$$
is compatible with the given gradings.
\end{definition}
\noindent
Any vector bundle is an example of a cone. In fact the category of
vector bundles over $S$ is a full subcategory of the category of cones
over $S$.
\section{Proj of a graded ring}
\label{section-proj}
\noindent
In this section we construct Proj of a graded ring
following \cite[II, Section 2]{EGA}.
\medskip\noindent
Let $S$ be a graded ring. Consider the topological space $\text{Proj}(S)$
associated to $S$, see Algebra, Section \ref{algebra-section-proj}.
We will endow this space with a sheaf of rings $\mathcal{O}_{\text{Proj}(S)}$
such that the resulting pair $(\text{Proj}(S), \mathcal{O}_{\text{Proj}(S)})$
will be a scheme.
\medskip\noindent
Recall that $\text{Proj}(S)$ has a basis of open sets $D_{+}(f)$,
$f \in S_d$, $d \geq 1$ which we call {\it standard opens}, see Algebra,
Section \ref{algebra-section-proj}. This terminology will always
imply that $f$ is homogeneous of positive degree even if we forget to
mention it. In addition, the intersection of two standard opens is another:
$D_{+}(f) \cap D_{+}(g) = D_{+}(fg)$, for $f, g \in S$ homogeneous of positive
degree.
\begin{lemma}
\label{lemma-standard-open}
Let $S$ be a graded ring. Let $f \in S$ homogeneous of positive degree.
\begin{enumerate}
\item If $g\in S$ homogeneous of positive degree
and $D_{+}(g) \subset D_{+}(f)$, then
\begin{enumerate}
\item $f$ is invertible in $S_g$, and
$f^{\deg(g)}/g^{\deg(f)}$ is invertible in $S_{(g)}$,
\item $g^e = af$ for some $e \geq 1$ and $a \in S$ homogeneous,
\item there is a canonical $S$-algebra map $S_f \to S_g$,
\item there is a canonical $S_0$-algebra map $S_{(f)} \to S_{(g)}$
compatible with the map $S_f \to S_g$,
\item the map $S_{(f)} \to S_{(g)}$ induces an isomorphism
$$
(S_{(f)})_{g^{\deg(f)}/f^{\deg(g)}} \cong S_{(g)},
$$
\item these maps induce a commutative diagram of
topological spaces
$$
\xymatrix{
D_{+}(g) \ar[d] &
\{\mathbf{Z}\text{-graded primes of }S_g\} \ar[l] \ar[r] \ar[d] &
\Spec(S_{(g)}) \ar[d] \\
D_{+}(f) &
\{\mathbf{Z}\text{-graded primes of }S_f\} \ar[l] \ar[r] &
\Spec(S_{(f)})
}
$$
where the horizontal maps are homeomorphisms and the vertical maps
are open immersions,
\item there are compatible canonical $S_f$ and $S_{(f)}$-module
maps $M_f \to M_g$ and $M_{(f)} \to M_{(g)}$ for any graded $S$-module $M$,
and
\item the map $M_{(f)} \to M_{(g)}$ induces an isomorphism
$$
(M_{(f)})_{g^{\deg(f)}/f^{\deg(g)}} \cong M_{(g)}.
$$
\end{enumerate}
\item Any open covering of $D_{+}(f)$ can be refined to a finite
open covering of the form $D_{+}(f) = \bigcup_{i = 1}^n D_{+}(g_i)$.
\item Let $g_1, \ldots, g_n \in S$ be homogeneous of positive degree.
Then $D_{+}(f) \subset \bigcup D_{+}(g_i)$
if and only if
$g_1^{\deg(f)}/f^{\deg(g_1)}, \ldots, g_n^{\deg(f)}/f^{\deg(g_n)}$
generate the unit ideal in $S_{(f)}$.
\end{enumerate}
\end{lemma}