forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
algebraization.tex
9503 lines (8767 loc) · 361 KB
/
algebraization.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Algebraic and Formal Geometry}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
This chapter continues the study of formal algebraic geometry
and in particular the question of whether a formal object is
the completion of an algebraic one. A fundamental reference is \cite{SGA2}.
Here is a list of results we have already discussed
in the Stacks project:
\begin{enumerate}
\item The theorem on formal functions, see
Cohomology of Schemes, Section \ref{coherent-section-theorem-formal-functions}.
\item Coherent formal modules, see
Cohomology of Schemes, Section \ref{coherent-section-coherent-formal}.
\item Grothendieck's existence theorem, see
Cohomology of Schemes, Sections \ref{coherent-section-existence},
\ref{coherent-section-existence-proper}, and
\ref{coherent-section-existence-proper-support}.
\item Grothendieck's algebraization theorem, see
Cohomology of Schemes, Section \ref{coherent-section-algebraization}.
\item Grothendieck's existence theorem more generally, see
More on Flatness, Sections \ref{flat-section-existence} and
\ref{flat-section-existence-derived}.
\end{enumerate}
Let us give an overview of the contents of this chapter.
\medskip\noindent
Let $X$ be a scheme and let $\mathcal{I} \subset \mathcal{O}_X$
be a finite type quasi-coherent sheaf of ideals. Many questions
in this chapter have to do with inverse systems $(\mathcal{F}_n)$
of quasi-coherent $\mathcal{O}_X$-modules such that
$\mathcal{F}_n = \mathcal{F}_{n + 1}/\mathcal{I}^n\mathcal{F}_{n + 1}$.
An important special case is where $X$ is a scheme over a Noetherian
ring $A$ and $\mathcal{I} = I \mathcal{O}_X$ for some ideal $I \subset A$.
In Cohomology, Sections \ref{cohomology-section-inverse-systems},
\ref{cohomology-section-inverse-systems-bis}, and
\ref{cohomology-section-inverse-systems-tri} we have some general
results. In this chapter, Sections \ref{section-ML-degree-zero} and
\ref{section-formal-functions-principal} contain results specific
to schemes and quasi-coherent modules. In
Section \ref{section-formal-sections-cd-one} we prove
that the limit topology on $\lim H^p(X, \mathcal{F}_n)$ is $I$-adic
in case $\text{cd}(A, I) = 1$. One of the themes
of this chapter will be to show that results proven in the
principal ideal case $I = (f)$
also hold when we only assume $\text{cd}(A, I) = 1$.
\medskip\noindent
In Section \ref{section-derived-completion} we discuss derived completion
of modules on a ringed site $(\mathcal{C}, \mathcal{O})$
with respect to a finite type sheaf of ideals $\mathcal{I}$.
This section is the natural continuation of the theory of derived completion
in commutative algebra as described in
More on Algebra, Section \ref{more-algebra-section-derived-completion}.
The first main result is that derived completion exists.
The second main result is that for a morphism $f$ if ringed sites
derived completion commutes with derived pushforward:
$$
(Rf_*K)^\wedge = Rf_*(K^\wedge)
$$
if the ideal sheaf upstairs is locally generated by sections coming
from the ideal downstairs, see
Lemma \ref{lemma-pushforward-commutes-with-derived-completion}.
We stress that both main results are very elementary in case the
ideals in question are globally finitely generated which will
be true for all applications of this theory in this chapter.
The displayed equality is the ``correct'' version of the
theorem on formal functions, see discussion in
Section \ref{section-formal-functions}.
\medskip\noindent
Let $A$ be a Noetherian ring and let $I, J$ be two ideals of $A$.
Let $M$ be a finite $A$-module.
The next topic in this chapter is the map
$$
R\Gamma_J(M) \longrightarrow R\Gamma_J(M)^\wedge
$$
from local cohomology of $M$ into the derived $I$-adic completion
of the same. It turns out that if we impose suitable depth conditions
this map becomes an isomorphism on cohomology in a range of degrees.
In Section \ref{section-algebraization-sections-general}
we work essentially in the generality just mentioned.
In Section \ref{section-algebraization-punctured}
we assume $A$ is a local ring and $J = \mathfrak m$ is a maximal ideal.
We encourage the reader to read this section before the other two in
this part of the chapter.
Finally, in Section \ref{section-bootstrap} we bootstrap
the local case to obtain stronger results back in the general case.
\medskip\noindent
In the next part of this chapter we use the results on
completion of local cohomology to get a nonexhaustive list of results on
cohomology of the completion of coherent modules.
More precisely, let $A$ be a Noetherian ring, let $I \subset A$
be an ideal, and let $U \subset \Spec(A)$ be an open subscheme.
If $\mathcal{F}$ is a coherent $\mathcal{O}_U$-module, then
we may consider the maps
$$
H^i(U, \mathcal{F}) \longrightarrow \lim H^i(U, \mathcal{F}/I^n\mathcal{F})
$$
and ask if we get an isomorphism in a certain range of degrees.
In Section \ref{section-algebraization-sections}
we work out some examples where $U$ is the punctured spectrum
of a local ring. In Section \ref{section-algebraization-sections-coherent}
we discuss the general case.
In Section \ref{section-connected} we apply some of the results
obtained to questions of connectedness in algebraic geometry.
\medskip\noindent
The remaining sections of this chapter are devoted to a discussion
of algebraization of coherent formal modules. In other words, given
an inverse system of coherent modules $(\mathcal{F}_n)$ on $U$
as above with
$\mathcal{F}_n = \mathcal{F}_{n + 1}/I^n\mathcal{F}_{n + 1}$
we ask whether there exists a coherent $\mathcal{O}_U$-module
$\mathcal{F}$ such that
$\mathcal{F}_n = \mathcal{F}/I^n\mathcal{F}$
for all $n$. We encourage the reader to read
Section \ref{section-algebraization-modules}
for a precise statement of the question, a useful general result
(Lemma \ref{lemma-when-done}), and a nontrivial application
(Lemma \ref{lemma-algebraization-principal-variant}).
To prove a result going essentially beyond this case
quite a bit more theory has to be developed.
Please see Section \ref{section-algebraization-modules-conclusion}
for the strongest results of this type obtained in this chapter.
\section{Formal sections, I}
\label{section-ML-degree-zero}
\noindent
We suggest looking at
Cohomology, Section \ref{cohomology-section-inverse-systems} first.
\begin{lemma}
\label{lemma-properties-system}
Let $X$ be a scheme. Let $\mathcal{I} \subset \mathcal{O}_X$
be a quasi-coherent sheaf of ideals. Let
$$
\ldots \to \mathcal{F}_3 \to \mathcal{F}_2 \to \mathcal{F}_1
$$
be an inverse system of quasi-coherent $\mathcal{O}_X$-modules
such that
$\mathcal{F}_n = \mathcal{F}_{n + 1}/\mathcal{I}^n\mathcal{F}_{n + 1}$.
Set $\mathcal{F} = \lim \mathcal{F}_n$. Then
\begin{enumerate}
\item $\mathcal{F} = R\lim \mathcal{F}_n$,
\item for any affine open $U \subset X$ we have
$H^p(U, \mathcal{F}) = 0$ for $p > 0$, and
\item for each $p$ there is a short exact sequence
$0 \to R^1\lim H^{p - 1}(X, \mathcal{F}_n) \to
H^p(X, \mathcal{F}) \to \lim H^p(X, \mathcal{F}_n) \to 0$.
\end{enumerate}
If moreover $\mathcal{I}$ is of finite type, then
\begin{enumerate}
\item[(4)]
$\mathcal{F}_n = \mathcal{F}/\mathcal{I}^n\mathcal{F}$, and
\item[(5)]
$\mathcal{I}^n \mathcal{F} = \lim_{m \geq n} \mathcal{I}^n\mathcal{F}_m$.
\end{enumerate}
\end{lemma}
\begin{proof}
Parts (1), (2), and (3) are general facts about inverse systems of
quasi-coherent modules with surjective transition maps, see
Derived Categories of Schemes, Lemma \ref{perfect-lemma-Rlim-quasi-coherent}
and Cohomology, Lemma \ref{cohomology-lemma-RGamma-commutes-with-Rlim}.
Next, assume $\mathcal{I}$ is of finite type.
Let $U \subset X$ be affine open. Say $U = \Spec(A)$ and $\mathcal{I}|_U$
corresponds to $I \subset A$. Observe that $I$ is a finitely generated ideal.
By the equivalence of categories between quasi-coherent $\mathcal{O}_U$-modules
and $A$-modules (Schemes, Lemma \ref{schemes-lemma-equivalence-quasi-coherent})
we find that $M_n = \mathcal{F}_n(U)$ is an inverse system
of $A$-modules with $M_n = M_{n + 1}/I^nM_{n + 1}$. Thus
$$
M = \mathcal{F}(U) = \lim \mathcal{F}_n(U) = \lim M_n
$$
is an $I$-adically complete module with $M/I^nM = M_n$ by
Algebra, Lemma \ref{algebra-lemma-limit-complete}. This proves (4).
Part (5) translates into the statement that
$\lim_{m \geq n} I^nM/I^mM = I^nM$.
Since $I^mM = I^{m - n} \cdot I^nM$ this is just the statement that
$I^mM$ is $I$-adically complete. This follows from
Algebra, Lemma \ref{algebra-lemma-hathat-finitely-generated}
and the fact that $M$ is complete.
\end{proof}
\section{Formal sections, II}
\label{section-formal-functions-principal}
\noindent
We suggest looking at
Cohomology, Sections
\ref{cohomology-section-inverse-systems-bis} and
\ref{cohomology-section-inverse-systems-tri} first.
\begin{lemma}
\label{lemma-equivalent-f-good}
Let $X$ be a scheme. Let $f \in \Gamma(X, \mathcal{O}_X)$. Let
$$
\ldots \to \mathcal{F}_3 \to \mathcal{F}_2 \to \mathcal{F}_1
$$
be an inverse system of quasi-coherent $\mathcal{O}_X$-modules.
The following are equivalent
\begin{enumerate}
\item for all $n \geq 1$ the map
$f : \mathcal{F}_{n + 1} \to \mathcal{F}_{n + 1}$ factors
through $\mathcal{F}_{n + 1} \to \mathcal{F}_n$ to give a
short exact sequence
$0 \to \mathcal{F}_n \to \mathcal{F}_{n + 1} \to \mathcal{F}_1 \to 0$,
\item for all $n \geq 1$ the map
$f^n : \mathcal{F}_{n + 1} \to \mathcal{F}_{n + 1}$
factors through $\mathcal{F}_{n + 1} \to \mathcal{F}_1$
to give a short exact sequence
$0 \to \mathcal{F}_1 \to \mathcal{F}_{n + 1} \to \mathcal{F}_n \to 0$
\item there exists an $\mathcal{O}_X$-module $\mathcal{G}$
which is $f$-divisible such that $\mathcal{F}_n = \mathcal{G}[f^n]$.
\item there exists an $\mathcal{O}_X$-module $\mathcal{F}$ which is
$f$-torsion free such that $\mathcal{F}_n = \mathcal{F}/f^n\mathcal{F}$.
\end{enumerate}
\end{lemma}
\begin{proof}
The equivalence of (1), (2), (3) and the implication (4) $\Rightarrow$ (1)
are proven in Cohomology, Lemma \ref{cohomology-lemma-equivalent-f-good}.
Assume (1) holds. Set
$\mathcal{F} = \lim \mathcal{F}_n$. By Lemma \ref{lemma-properties-system}
part (4) we have $\mathcal{F}_n = \mathcal{F}/f^n\mathcal{F}$.
Let $U \subset X$ be open and
$s = (s_n) \in \mathcal{F}(U) = \lim \mathcal{F}_n(U)$.
Choose $n \geq 1$. If $fs = 0$, then $s_{n + 1}$ is in the kernel of
$\mathcal{F}_{n + 1} \to \mathcal{F}_n$ by condition (1).
Hence $s_n = 0$. Since $n$ was arbitrary, we see $s = 0$.
Thus $\mathcal{F}$ is $f$-torsion free.
\end{proof}
\begin{lemma}
\label{lemma-formal-functions-principal}
\begin{reference}
Slightly improved version of \cite[Lemma 1.6]{Bhatt-local}
\end{reference}
Let $A$ be a ring and $f \in A$. Let $X$ be a scheme over $A$.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
Assume that $\mathcal{F}[f^n] = \Ker(f^n : \mathcal{F} \to \mathcal{F})$
stabilizes. Then
$$
R\Gamma(X, \lim \mathcal{F}/f^n\mathcal{F}) =
R\Gamma(X, \mathcal{F})^\wedge
$$
where the right hand side indicates the derived completion
with respect to the ideal $(f) \subset A$. Consequently, for
$p \in \mathbf{Z}$ we obtain a commutative diagram
$$
\xymatrix{
& 0 & 0 \\
0 \ar[r] &
\widehat{H^p(X, \mathcal{F})} \ar[r] \ar[u] &
\lim H^p(X, \mathcal{F}/f^n\mathcal{F}) \ar[r] \ar[u] &
T_f(H^{p + 1}(X, \mathcal{F})) \ar[r] &
0 \\
0 \ar[r] &
H^0(H^p(X, \mathcal{F})^\wedge) \ar[r] \ar[u] &
H^p(X, \lim \mathcal{F}/f^n\mathcal{F}) \ar[r] \ar[u] &
T_f(H^{p + 1}(X, \mathcal{F})) \ar[r] \ar@{=}[u] &
0 \\
&
R^1\lim H^p(X, \mathcal{F})[f^n] \ar[u] \ar[r]^\cong &
R^1\lim H^{p - 1}(X, \mathcal{F}/f^n\mathcal{F}) \ar[u] \\
& 0 \ar[u] & 0 \ar[u]
}
$$
with exact rows and columns where
$\widehat{H^p(X, \mathcal{F})} =
\lim H^p(X, \mathcal{F})/f^n H^p(X, \mathcal{F})$
is the usual $f$-adic completion
and $T_f(-)$ denotes the $f$-adic Tate module as in
More on Algebra, Example
\ref{more-algebra-example-spectral-sequence-principal}.
\end{lemma}
\begin{proof}
By Lemma \ref{lemma-properties-system} we have
$\lim \mathcal{F}/f^n\mathcal{F} = R\lim \mathcal{F}/f^n \mathcal{F}$.
Everything else follows from Cohomology, Example
\ref{cohomology-example-formal-functions-principal}.
\end{proof}
\section{Formal sections, III}
\label{section-formal-sections-cd-one}
\noindent
In this section we prove Lemma \ref{lemma-topology-I-adic}
which (in the setting of Noetherian schemes and coherent modules)
is the analogue of Cohomology, Lemma \ref{cohomology-lemma-topology-I-adic-f}
in case the ideal $I$ is not assumed principal but
has the property that $\text{cd}(A, I) = 1$.
\begin{lemma}
\label{lemma-cd-one}
Let $I = (f_1, \ldots, f_r)$ be an ideal of a Noetherian ring $A$.
If $\text{cd}(A, I) = 1$, then there exist $c \geq 1$ and maps
$\varphi_j : I^c \to A$ such that $\sum f_j \varphi_j : I^c \to I$
is the inclusion map.
\end{lemma}
\begin{proof}
Since $\text{cd}(A, I) = 1$ the complement $U = \Spec(A) \setminus V(I)$
is affine (Local Cohomology, Lemma \ref{local-cohomology-lemma-cd-is-one}).
Say $U = \Spec(B)$. Then $IB = B$
and we can write $1 = \sum_{j = 1, \ldots, r} f_j b_j$
for some $b_j \in B$. By
Cohomology of Schemes, Lemma \ref{coherent-lemma-homs-over-open}
we can represent $b_j$ by maps $\varphi_j : I^c \to A$
for some $c \geq 0$. Then $\sum f_j \varphi_j : I^c \to I \subset A$
is the canonical embedding, after possibly replacing $c$ by a larger
integer, by the same lemma.
\end{proof}
\begin{lemma}
\label{lemma-cd-one-extend}
Let $I = (f_1, \ldots, f_r)$ be an ideal of a Noetherian ring $A$
with $\text{cd}(A, I) = 1$. Let $c \geq 1$ and $\varphi_j : I^c \to A$,
$j = 1, \ldots, r$ be as in Lemma \ref{lemma-cd-one}.
Then there is a unique graded $A$-algebra map
$$
\Phi : \bigoplus\nolimits_{n \geq 0} I^{nc} \to A[T_1, \ldots, T_r]
$$
with $\Phi(g) = \sum \varphi_j(g) T_j$ for $g \in I^c$.
Moreover, the composition of $\Phi$ with the map
$A[T_1, \ldots, T_r] \to \bigoplus_{n \geq 0} I^n$,
$T_j \mapsto f_j$ is the inclusion map
$\bigoplus_{n \geq 0} I^{nc} \to \bigoplus_{n \geq 0} I^n$.
\end{lemma}
\begin{proof}
For each $j$ and $m \geq c$ the restriction of $\varphi_j$ to
$I^m$ is a map $\varphi_j : I^m \to I^{m - c}$.
Given $j_1, \ldots, j_n \in \{1, \ldots, r\}$ we claim that the
composition
$$
\varphi_{j_1} \ldots \varphi_{j_n} :
I^{nc} \to I^{(n - 1)c} \to \ldots \to I^c \to A
$$
is independent of the order of the indices $j_1, \ldots, j_n$.
Namely, if $g = g_1 \ldots g_n$ with $g_i \in I^c$, then
we see that
$$
(\varphi_{j_1} \ldots \varphi_{j_n})(g) =
\varphi_{j_1}(g_1) \ldots \varphi_{j_n}(g_n)
$$
is independent of the ordering as multiplication in $A$ is commutative.
Thus we can define $\Phi$ by sending $g \in I^{nc}$ to
$$
\Phi(g) = \sum\nolimits_{e_1 + \ldots + e_r = n}
(\varphi_1^{e_1} \circ \ldots \circ \varphi_r^{e_r})(g)
T_1^{e_1} \ldots T_r^{e_r}
$$
It is straightforward to prove that this is a graded $A$-algebra
homomorphism with the desired property. Uniqueness is immediate
as is the final property. This proves the lemma.
\end{proof}
\begin{lemma}
\label{lemma-cd-one-extend-to-module}
Let $I = (f_1, \ldots, f_r)$ be an ideal of a Noetherian ring $A$
with $\text{cd}(A, I) = 1$. Let $c \geq 1$ and $\varphi_j : I^c \to A$,
$j = 1, \ldots, r$ be as in Lemma \ref{lemma-cd-one}.
Let $A \to B$ be a ring map with $B$ Noetherian and let $N$ be
a finite $B$-module. Then, after possibly increasing $c$
and adjusting $\varphi_j$ accordingly, there is a unique
unique graded $B$-module map
$$
\Phi_N : \bigoplus\nolimits_{n \geq 0} I^{nc}N \to N[T_1, \ldots, T_r]
$$
with $\Phi_N(g x) = \Phi(g) x$ for $g \in I^{nc}$ and $x \in N$
where $\Phi$ is as in Lemma \ref{lemma-cd-one-extend}.
The composition of $\Phi_N$ with the map
$N[T_1, \ldots, T_r] \to \bigoplus_{n \geq 0} I^nN$,
$T_j \mapsto f_j$ is the inclusion map
$\bigoplus_{n \geq 0} I^{nc}N \to \bigoplus_{n \geq 0} I^nN$.
\end{lemma}
\begin{proof}
The uniqueness is clear from the formula and the uniqueness of $\Phi$ in
Lemma \ref{lemma-cd-one-extend}. Consider the Noetherian $A$-algebra
$B' = B \oplus N$ where $N$ is an ideal of square zero. To show
the existence of $\Phi_N$ it is enough
(via Lemma \ref{lemma-cd-one}) to show that $\varphi_j$ extends to
a map $\varphi'_j : I^cB' \to B'$ after possibly increasing $c$
to some $c'$ (and replacing $\varphi_j$ by the composition of the inclusion
$I^{c'} \to I^c$ with $\varphi_j$). Recall that $\varphi_j$ corresponds to a
section
$$
h_j \in \Gamma(\Spec(A) \setminus V(I), \mathcal{O}_{\Spec(A)})
$$
see Cohomology of Schemes, Lemma \ref{coherent-lemma-homs-over-open}.
(This is in fact how we chose our $\varphi_j$ in the proof of
Lemma \ref{lemma-cd-one}.) Let us use the same lemma to represent the pullback
$$
h'_j \in \Gamma(\Spec(B') \setminus V(IB'), \mathcal{O}_{\Spec(B')})
$$
of $h_j$ by a $B'$-linear map
$\varphi'_j : I^{c'}B' \to B'$ for some $c' \geq c$.
The agreement with $\varphi_j$ will hold for $c'$
sufficiently large by a further application of the lemma:
namely we can test agreement on a finite list of generators of $I^{c'}$.
Small detail omitted.
\end{proof}
\begin{lemma}
\label{lemma-cd-is-one-for-system}
Let $I = (f_1, \ldots, f_r)$ be an ideal of a Noetherian ring $A$ with
$\text{cd}(A, I) = 1$. Let $c \geq 1$ and $\varphi_j : I^c \to A$,
$j = 1, \ldots, r$ be as in Lemma \ref{lemma-cd-one}.
Let $X$ be a Noetherian scheme over $\Spec(A)$. Let
$$
\ldots \to \mathcal{F}_3 \to \mathcal{F}_2 \to \mathcal{F}_1
$$
be an inverse system of coherent $\mathcal{O}_X$-modules
such that $\mathcal{F}_n = \mathcal{F}_{n + 1}/I^n\mathcal{F}_{n + 1}$.
Set $\mathcal{F} = \lim \mathcal{F}_n$.
Then, after possibly increasing $c$ and adjusting $\varphi_j$ accordingly,
there exists a unique graded $\mathcal{O}_X$-module map
$$
\Phi_\mathcal{F} :
\bigoplus\nolimits_{n \geq 0} I^{nc}\mathcal{F}
\longrightarrow
\mathcal{F}[T_1, \ldots, T_r]
$$
with $\Phi_\mathcal{F}(g s) = \Phi(g) s$ for $g \in I^{nc}$ and
$s$ a local section of $\mathcal{F}$ where $\Phi$ is as in
Lemma \ref{lemma-cd-one-extend}. The composition of $\Phi_\mathcal{F}$
with the map
$\mathcal{F}[T_1, \ldots, T_r] \to \bigoplus_{n \geq 0} I^n\mathcal{F}$,
$T_j \mapsto f_j$
is the canonical inclusion
$\bigoplus_{n \geq 0} I^{nc}\mathcal{F} \to
\bigoplus_{n \geq 0} I^n\mathcal{F}$.
\end{lemma}
\begin{proof}
The uniqueness is immediate from the $\mathcal{O}_X$-linearity
and the requirement that $\Phi_\mathcal{F}(g s) = \Phi(g) s$ for
$g \in I^{nc}$ and $s$ a local section of $\mathcal{F}$.
Thus we may assume $X = \Spec(B)$ is affine.
Observe that $(\mathcal{F}_n)$ is an object of the category
$\textit{Coh}(X, I\mathcal{O}_X)$ introduced
in Cohomology of Schemes, Section \ref{coherent-section-coherent-formal}.
Let $B' = B^\wedge$ be the $I$-adic completion of $B$.
By Cohomology of Schemes, Lemma \ref{coherent-lemma-inverse-systems-affine}
the object $(\mathcal{F}_n)$ corresponds to a finite $B'$-module $N$
in the sense that $\mathcal{F}_n$ is the coherent
module associated to the finite $B$-module $N/I^n N$.
Applying Lemma \ref{lemma-cd-one-extend-to-module}
to $I \subset A \to B'$ and $N$
we see that, after possibly increasing $c$ and adjusting
$\varphi_j$ accordingly, we get unique maps
$$
\Phi_N : \bigoplus\nolimits_{n \geq 0} I^{nc}N \to N[T_1, \ldots, T_r]
$$
with the corresponding properties. Note that in degree $n$ we obtain
an inverse system of maps $N/I^mN \to \bigoplus_{e_1 + \ldots + e_r = n}
N/I^{m - nc}N \cdot T_1^{e_1} \ldots T_r^{e_r}$ for $m \geq nc$.
Translating back into coherent
sheaves we see that $\Phi_N$ corresponds to a system of maps
$$
\Phi^n_m :
I^{nc}\mathcal{F}_m
\longrightarrow
\bigoplus\nolimits_{e_1 + \ldots + e_r = n}
\mathcal{F}_{m - nc} \cdot T_1^{e_1} \ldots T_r^{e_r}
$$
for varying $m \geq nc$ and $n \geq 1$. Taking the inverse limit of
these maps over $m$ we obtain $\Phi_\mathcal{F} = \bigoplus_n \lim_m \Phi^n_m$.
Note that $\lim_m I^t\mathcal{F}_m = I^t \mathcal{F}$ as can be seen by
evaluating on affines for example, but in fact we don't need this because
it is clear there is a map $I^t\mathcal{F} \to \lim_m I^t\mathcal{F}_m$.
\end{proof}
\begin{lemma}
\label{lemma-topology-I-adic}
Let $I$ be an ideal of a Noetherian ring $A$. Let $X$ be a Noetherian scheme
over $\Spec(A)$. Let
$$
\ldots \to \mathcal{F}_3 \to \mathcal{F}_2 \to \mathcal{F}_1
$$
be an inverse system of coherent $\mathcal{O}_X$-modules
such that $\mathcal{F}_n = \mathcal{F}_{n + 1}/I^n\mathcal{F}_{n + 1}$.
If $\text{cd}(A, I) = 1$, then for all $p \in \mathbf{Z}$ the limit topology on
$\lim H^p(X, \mathcal{F}_n)$ is $I$-adic.
\end{lemma}
\begin{proof}
First it is clear that $I^t \lim H^p(X, \mathcal{F}_n)$
maps to zero in $H^p(X, \mathcal{F}_t)$. Thus the $I$-adic topology
is finer than the limit topology. For the converse we set
$\mathcal{F} = \lim \mathcal{F}_n$, we pick generators $f_1, \ldots, f_r$
of $I$, we pick $c \geq 1$, and we choose
$\Phi_\mathcal{F}$ as in Lemma \ref{lemma-cd-is-one-for-system}.
We will use the results of Lemma \ref{lemma-properties-system}
without further mention. In particular we have a short exact
sequence
$$
0 \to R^1\lim H^{p - 1}(X, \mathcal{F}_n) \to H^p(X, \mathcal{F})
\to \lim H^p(X, \mathcal{F}_n) \to 0
$$
Thus we can lift any element $\xi$ of $\lim H^p(X, \mathcal{F}_n)$
to an element $\xi' \in H^p(X, \mathcal{F})$. Suppose $\xi$ maps to zero
in $H^p(X, \mathcal{F}_{nc})$ for some $n$, in other
words, suppose $\xi$ is ``small'' in the limit topology. We have a
short exact sequence
$$
0 \to I^{nc}\mathcal{F} \to \mathcal{F} \to \mathcal{F}_{nc} \to 0
$$
and hence the assumption means we can lift $\xi'$ to an element
$\xi'' \in H^p(X, I^{nc}\mathcal{F})$. Applying $\Phi_\mathcal{F}$
we get
$$
\Phi_\mathcal{F}(\xi'') = \sum\nolimits_{e_1 + \ldots + e_r = n}
\xi'_{e_1, \ldots, e_r} \cdot T_1^{e_1} \ldots T_r^{e_r}
$$
for some $\xi'_{e_1, \ldots, e_r} \in H^p(X, \mathcal{F})$.
Letting $\xi_{e_1, \ldots, e_r} \in \lim H^p(X, \mathcal{F}_n)$
be the images and using the final assertion of
Lemma \ref{lemma-cd-is-one-for-system}
we conclude that
$$
\xi = \sum f_1^{e_1} \ldots f_r^{e_r} \xi_{e_1, \ldots, e_r}
$$
is in $I^n \lim H^p(X, \mathcal{F}_n)$ as desired.
\end{proof}
\begin{example}
\label{example-not-I-adic}
Let $k$ be a field. Let $A = k[x, y][[s, t]]/(xs - yt)$.
Let $I = (s, t)$ and $\mathfrak a = (x, y, s, t)$.
Let $X = \Spec(A) - V(\mathfrak a)$ and
$\mathcal{F}_n = \mathcal{O}_X/I^n\mathcal{O}_X$.
Observe that the rational function
$$
g = \frac{t}{x} = \frac{s}{y}
$$
is regular in an open neighbourhood $V \subset X$ of
$V(I\mathcal{O}_X)$. Hence every power $g^e$ determines a section
$g^e \in M = \lim H^0(X, \mathcal{F}_n)$. Observe that
$g^e \to 0$ as $e \to \infty$ in the limit topology on $M$
since $g^e$ maps to zero in $\mathcal{F}_e$.
On the other hand, $g^e \not \in IM$ for any $e$
as the reader can see by computing $H^0(U, \mathcal{F}_n)$;
computation omitted. Observe that $\text{cd}(A, I) = 2$.
Thus the result of Lemma \ref{lemma-topology-I-adic} is sharp.
\end{example}
\section{Mittag-Leffler conditions}
\label{section-ML}
\noindent
When taking local cohomology with respect to the maximal ideal
of a local Noetherian ring, we often get the Mittag-Leffler condition
for free. This implies the same thing is true for higher cohomology
groups of an inverse system of coherent sheaves with surjective transition
maps on the puncture spectrum.
\begin{lemma}
\label{lemma-descending-chain}
Let $(A, \mathfrak m)$ be a Noetherian local ring.
\begin{enumerate}
\item Let $M$ be a finite $A$-module. Then the $A$-module
$H^i_\mathfrak m(M)$ satisfies the descending chain condition
for any $i$.
\item Let $U = \Spec(A) \setminus \{\mathfrak m\}$ be the
punctured spectrum of $A$.
Let $\mathcal{F}$ be a coherent $\mathcal{O}_U$-module.
Then the $A$-module $H^i(U, \mathcal{F})$
satisfies the descending chain condition for $i > 0$.
\end{enumerate}
\end{lemma}
\begin{proof}
We will prove part (1) by induction on the dimension of the support of $M$.
The statement holds if $M = 0$, thus we may and do assume $M$ is not zero.
\medskip\noindent
Base case of the induction.
If $\dim(\text{Supp}(M)) = 0$, then the support
of $M$ is $\{\mathfrak m\}$ and we see that $H^0_\mathfrak m(M) = M$
and $H^i_\mathfrak m(M) = 0$ for $i > 0$ as is clear from the
construction of local cohomology, see
Dualizing Complexes, Section \ref{dualizing-section-local-cohomology}.
Since $M$ has finite length (Algebra, Lemma \ref{algebra-lemma-length-finite})
it has the descending chain condition.
\medskip\noindent
Induction step. Assume $\dim(\text{Supp}(M)) > 0$.
By the base case the finite module $H^0_\mathfrak m(M) \subset M$
has the descending chain condition.
By Dualizing Complexes, Lemma \ref{dualizing-lemma-divide-by-torsion}
we may replace $M$ by $M/H^0_\mathfrak m(M)$.
Then $H^0_\mathfrak m(M) = 0$, i.e., $M$ has depth $\geq 1$, see
Dualizing Complexes, Lemma \ref{dualizing-lemma-depth}.
Choose $x \in \mathfrak m$ such that $x : M \to M$ is injective.
By Algebra, Lemma \ref{algebra-lemma-one-equation-module} we have
$\dim(\text{Supp}(M/xM)) = \dim(\text{Supp}(M)) - 1$ and the
induction hypothesis applies. Pick an index $i$ and consider the
exact sequence
$$
H^{i - 1}_\mathfrak m(M/xM) \to H^i_\mathfrak m(M) \xrightarrow{x}
H^i_\mathfrak m(M)
$$
coming from the short exact sequence $0 \to M \xrightarrow{x} M \to M/xM \to 0$.
It follows that the $x$-torsion $H^i_\mathfrak m(M)[x]$
is a quotient of a module with the descending chain condition, and
hence has the descending chain condition itself. Hence the
$\mathfrak m$-torsion submodule $H^i_\mathfrak m(M)[\mathfrak m]$ has
the descending chain condition (and hence is finite dimensional
over $A/\mathfrak m$). Thus we conclude that the $\mathfrak m$-power
torsion module $H^i_\mathfrak m(M)$ has the descending chain
condition by Dualizing Complexes, Lemma
\ref{dualizing-lemma-describe-categories}.
\medskip\noindent
Part (2) follows from (1) via Local Cohomology,
Lemma \ref{local-cohomology-lemma-finiteness-pushforwards-and-H1-local}.
\end{proof}
\begin{lemma}
\label{lemma-ML-local}
Let $(A, \mathfrak m)$ be a Noetherian local ring.
\begin{enumerate}
\item Let $(M_n)$ be an inverse system of finite $A$-modules. Then the
inverse system $H^i_\mathfrak m(M_n)$ satisfies the Mittag-Leffler
condition for any $i$.
\item Let $U = \Spec(A) \setminus \{\mathfrak m\}$ be the
punctured spectrum of $A$.
Let $\mathcal{F}_n$ be an inverse system of
coherent $\mathcal{O}_U$-modules.
Then the inverse system $H^i(U, \mathcal{F}_n)$
satisfies the Mittag-Leffler condition for $i > 0$.
\end{enumerate}
\end{lemma}
\begin{proof}
Follows immediately from Lemma \ref{lemma-descending-chain}.
\end{proof}
\begin{lemma}
\label{lemma-terrific}
Let $(A, \mathfrak m)$ be a Noetherian local ring.
Let $(M_n)$ be an inverse system of finite $A$-modules.
Let $M \to \lim M_n$ be a map where $M$ is a finite $A$-module
such that for some $i$ the map
$H^i_\mathfrak m(M) \to \lim H^i_\mathfrak m(M_n)$
is an isomorphism.
Then the inverse system $H^i_\mathfrak m(M_n)$
is essentially constant with value $H^i_\mathfrak m(M)$.
\end{lemma}
\begin{proof}
By Lemma \ref{lemma-ML-local} the inverse system $H^i_\mathfrak m(M_n)$
satisfies the Mittag-Leffler condition. Let $E_n \subset H^i_\mathfrak m(M_n)$
be the image of $H^i_\mathfrak m(M_{n'})$ for $n' \gg n$.
Then $(E_n)$ is an inverse system with surjective transition maps
and $H^i_\mathfrak m(M) = \lim E_n$. Since $H^i_\mathfrak m(M)$
has the descending chain condition by
Lemma \ref{lemma-descending-chain}
we find there can only be a finite number of nontrivial
kernels of the surjections $H^i_\mathfrak m(M) \to E_n$.
Thus $E_n \to E_{n - 1}$ is an isomorphism for all $n \gg 0$
as desired.
\end{proof}
\begin{lemma}
\label{lemma-local-cohomology-derived-completion}
Let $(A, \mathfrak m)$ be a Noetherian local ring.
Let $I \subset A$ be an ideal. Let $M$ be a finite $A$-module.
Then
$$
H^i(R\Gamma_\mathfrak m(M)^\wedge) = \lim H^i_\mathfrak m(M/I^nM)
$$
for all $i$ where $R\Gamma_\mathfrak m(M)^\wedge$ denotes
the derived $I$-adic completion.
\end{lemma}
\begin{proof}
Apply Dualizing Complexes, Lemma \ref{dualizing-lemma-completion-local}
and Lemma \ref{lemma-ML-local} to see the vanishing of the $R^1\lim$ terms.
\end{proof}
\section{Derived completion on a ringed site}
\label{section-derived-completion}
\noindent
We urge the reader to skip this section on a first reading.
\medskip\noindent
The algebra version of this material can be found in
More on Algebra, Section \ref{more-algebra-section-derived-completion}.
Let $\mathcal{O}$ be a sheaf of rings on a site $\mathcal{C}$.
Let $f$ be a global section of $\mathcal{O}$. We denote
$\mathcal{O}_f$ the sheaf associated to the presheaf of localizations
$U \mapsto \mathcal{O}(U)_f$.
\begin{lemma}
\label{lemma-map-twice-localize}
Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $f$ be a global
section of $\mathcal{O}$.
\begin{enumerate}
\item For $L, N \in D(\mathcal{O}_f)$ we have
$R\SheafHom_\mathcal{O}(L, N) = R\SheafHom_{\mathcal{O}_f}(L, N)$.
In particular the two $\mathcal{O}_f$-structures on
$R\SheafHom_\mathcal{O}(L, N)$ agree.
\item For $K \in D(\mathcal{O})$ and
$L \in D(\mathcal{O}_f)$ we have
$$
R\SheafHom_\mathcal{O}(L, K) =
R\SheafHom_{\mathcal{O}_f}(L, R\SheafHom_\mathcal{O}(\mathcal{O}_f, K))
$$
In particular
$R\SheafHom_\mathcal{O}(\mathcal{O}_f,
R\SheafHom_\mathcal{O}(\mathcal{O}_f, K)) =
R\SheafHom_\mathcal{O}(\mathcal{O}_f, K)$.
\item If $g$ is a second global
section of $\mathcal{O}$, then
$$
R\SheafHom_\mathcal{O}(\mathcal{O}_f, R\SheafHom_\mathcal{O}(\mathcal{O}_g, K))
= R\SheafHom_\mathcal{O}(\mathcal{O}_{gf}, K).
$$
\end{enumerate}
\end{lemma}
\begin{proof}
Proof of (1). Let $\mathcal{J}^\bullet$ be a K-injective complex of
$\mathcal{O}_f$-modules representing $N$. By Cohomology on Sites, Lemma
\ref{sites-cohomology-lemma-K-injective-flat} it follows that
$\mathcal{J}^\bullet$ is a K-injective complex of
$\mathcal{O}$-modules as well. Let $\mathcal{F}^\bullet$ be a complex of
$\mathcal{O}_f$-modules representing $L$. Then
$$
R\SheafHom_\mathcal{O}(L, N) =
R\SheafHom_\mathcal{O}(\mathcal{F}^\bullet, \mathcal{J}^\bullet) =
R\SheafHom_{\mathcal{O}_f}(\mathcal{F}^\bullet, \mathcal{J}^\bullet)
$$
by
Modules on Sites, Lemma \ref{sites-modules-lemma-epimorphism-modules}
because $\mathcal{J}^\bullet$ is a K-injective complex of $\mathcal{O}$
and of $\mathcal{O}_f$-modules.
\medskip\noindent
Proof of (2). Let $\mathcal{I}^\bullet$ be a K-injective complex of
$\mathcal{O}$-modules representing $K$.
Then $R\SheafHom_\mathcal{O}(\mathcal{O}_f, K)$ is represented by
$\SheafHom_\mathcal{O}(\mathcal{O}_f, \mathcal{I}^\bullet)$ which is
a K-injective complex of $\mathcal{O}_f$-modules and of
$\mathcal{O}$-modules by
Cohomology on Sites, Lemmas \ref{sites-cohomology-lemma-hom-K-injective} and
\ref{sites-cohomology-lemma-K-injective-flat}.
Let $\mathcal{F}^\bullet$ be a complex of $\mathcal{O}_f$-modules
representing $L$. Then
$$
R\SheafHom_\mathcal{O}(L, K) =
R\SheafHom_\mathcal{O}(\mathcal{F}^\bullet, \mathcal{I}^\bullet) =
R\SheafHom_{\mathcal{O}_f}(\mathcal{F}^\bullet,
\SheafHom_\mathcal{O}(\mathcal{O}_f, \mathcal{I}^\bullet))
$$
by Modules on Sites, Lemma \ref{sites-modules-lemma-adjoint-hom-restrict}
and because $\SheafHom_\mathcal{O}(\mathcal{O}_f, \mathcal{I}^\bullet)$ is a
K-injective complex of $\mathcal{O}_f$-modules.
\medskip\noindent
Proof of (3). This follows from the fact that
$R\SheafHom_\mathcal{O}(\mathcal{O}_g, \mathcal{I}^\bullet)$
is K-injective as a complex of $\mathcal{O}$-modules and the fact that
$\SheafHom_\mathcal{O}(\mathcal{O}_f,
\SheafHom_\mathcal{O}(\mathcal{O}_g, \mathcal{H})) =
\SheafHom_\mathcal{O}(\mathcal{O}_{gf}, \mathcal{H})$
for all sheaves of $\mathcal{O}$-modules $\mathcal{H}$.
\end{proof}
\noindent
Let $K \in D(\mathcal{O})$. We denote
$T(K, f)$ a derived limit (Derived Categories, Definition
\ref{derived-definition-derived-limit}) of the inverse system
$$
\ldots \to K \xrightarrow{f} K \xrightarrow{f} K
$$
in $D(\mathcal{O})$.
\begin{lemma}
\label{lemma-hom-from-Af}
Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $f$ be a global
section of $\mathcal{O}$. Let $K \in D(\mathcal{O})$.
The following are equivalent
\begin{enumerate}
\item $R\SheafHom_\mathcal{O}(\mathcal{O}_f, K) = 0$,
\item $R\SheafHom_\mathcal{O}(L, K) = 0$ for all $L$ in $D(\mathcal{O}_f)$,
\item $T(K, f) = 0$.
\end{enumerate}
\end{lemma}
\begin{proof}
It is clear that (2) implies (1). The implication (1) $\Rightarrow$ (2)
follows from Lemma \ref{lemma-map-twice-localize}.
A free resolution of the $\mathcal{O}$-module $\mathcal{O}_f$ is given by
$$
0 \to \bigoplus\nolimits_{n \in \mathbf{N}} \mathcal{O} \to
\bigoplus\nolimits_{n \in \mathbf{N}} \mathcal{O}
\to \mathcal{O}_f \to 0
$$
where the first map sends a local section $(x_0, x_1, \ldots)$ to
$(x_0, x_1 - fx_0, x_2 - fx_1, \ldots)$ and the second map sends
$(x_0, x_1, \ldots)$ to $x_0 + x_1/f + x_2/f^2 + \ldots$.
Applying $\SheafHom_\mathcal{O}(-, \mathcal{I}^\bullet)$
where $\mathcal{I}^\bullet$ is a K-injective complex of $\mathcal{O}$-modules
representing $K$ we get a short exact sequence of complexes
$$
0 \to \SheafHom_\mathcal{O}(\mathcal{O}_f, \mathcal{I}^\bullet) \to
\prod \mathcal{I}^\bullet \to \prod \mathcal{I}^\bullet \to 0
$$
because $\mathcal{I}^n$ is an injective $\mathcal{O}$-module.
The products are products in $D(\mathcal{O})$, see
Injectives, Lemma \ref{injectives-lemma-derived-products}.
This means that the object $T(K, f)$ is a representative of
$R\SheafHom_\mathcal{O}(\mathcal{O}_f, K)$ in $D(\mathcal{O})$.
Thus the equivalence of (1) and (3).
\end{proof}
\begin{lemma}
\label{lemma-ideal-of-elements-complete-wrt}
Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $K \in D(\mathcal{O})$.
The rule which associates to $U$ the set $\mathcal{I}(U)$
of sections $f \in \mathcal{O}(U)$ such that $T(K|_U, f) = 0$
is a sheaf of ideals in $\mathcal{O}$.
\end{lemma}
\begin{proof}
We will use the results of Lemma \ref{lemma-hom-from-Af} without further
mention. If $f \in \mathcal{I}(U)$, and $g \in \mathcal{O}(U)$, then
$\mathcal{O}_{U, gf}$ is an $\mathcal{O}_{U, f}$-module
hence $R\SheafHom_\mathcal{O}(\mathcal{O}_{U, gf}, K|_U) = 0$, hence
$gf \in \mathcal{I}(U)$. Suppose $f, g \in \mathcal{O}(U)$.
Then there is a short exact sequence
$$
0 \to \mathcal{O}_{U, f + g} \to
\mathcal{O}_{U, f(f + g)} \oplus \mathcal{O}_{U, g(f + g)} \to
\mathcal{O}_{U, gf(f + g)} \to 0
$$
because $f, g$ generate the unit ideal in $\mathcal{O}(U)_{f + g}$.
This follows from
Algebra, Lemma \ref{algebra-lemma-standard-covering}
and the easy fact that the last arrow is surjective.
Because $R\SheafHom_\mathcal{O}( - , K|_U)$ is an exact functor
of triangulated categories the vanishing of
$R\SheafHom_{\mathcal{O}_U}(\mathcal{O}_{U, f(f + g)}, K|_U)$,
$R\SheafHom_{\mathcal{O}_U}(\mathcal{O}_{U, g(f + g)}, K|_U)$, and
$R\SheafHom_{\mathcal{O}_U}(\mathcal{O}_{U, gf(f + g)}, K|_U)$,
implies the vanishing of
$R\SheafHom_{\mathcal{O}_U}(\mathcal{O}_{U, f + g}, K|_U)$.
We omit the verification of the sheaf condition.
\end{proof}
\noindent
We can make the following definition for any ringed site.
\begin{definition}
\label{definition-derived-complete}
Let $(\mathcal{C}, \mathcal{O})$ be a ringed site.
Let $\mathcal{I} \subset \mathcal{O}$ be a sheaf of ideals.
Let $K \in D(\mathcal{O})$. We say that $K$ is
{\it derived complete with respect to $\mathcal{I}$}
if for every object $U$ of $\mathcal{C}$ and $f \in \mathcal{I}(U)$
the object $T(K|_U, f)$ of $D(\mathcal{O}_U)$ is zero.
\end{definition}
\noindent
It is clear that the full subcategory
$D_{comp}(\mathcal{O}) = D_{comp}(\mathcal{O}, \mathcal{I}) \subset
D(\mathcal{O})$ consisting of derived complete objects
is a saturated triangulated subcategory, see
Derived Categories, Definitions
\ref{derived-definition-triangulated-subcategory} and
\ref{derived-definition-saturated}. This subcategory is preserved
under products and homotopy limits in $D(\mathcal{O})$.
But it is not preserved under countable direct sums in general.
\begin{lemma}
\label{lemma-derived-complete-internal-hom}
Let $(\mathcal{C}, \mathcal{O})$ be a ringed site.
Let $\mathcal{I} \subset \mathcal{O}$ be a sheaf of ideals.
If $K \in D(\mathcal{O})$ and $L \in D_{comp}(\mathcal{O})$, then
$R\SheafHom_\mathcal{O}(K, L) \in D_{comp}(\mathcal{O})$.
\end{lemma}
\begin{proof}
Let $U$ be an object of $\mathcal{C}$ and let $f \in \mathcal{I}(U)$.
Recall that
$$
\Hom_{D(\mathcal{O}_U)}(\mathcal{O}_{U, f}, R\SheafHom_\mathcal{O}(K, L)|_U)
=
\Hom_{D(\mathcal{O}_U)}(
K|_U \otimes_{\mathcal{O}_U}^\mathbf{L} \mathcal{O}_{U, f}, L|_U)
$$
by Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-internal-hom}.
The right hand side is zero by Lemma \ref{lemma-hom-from-Af}
and the relationship between internal hom and actual hom, see
Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-section-RHom-over-U}.
The same vanishing holds for all $U'/U$. Thus the object
$R\SheafHom_{\mathcal{O}_U}(\mathcal{O}_{U, f},
R\SheafHom_\mathcal{O}(K, L)|_U)$ of $D(\mathcal{O}_U)$ has vanishing
$0$th cohomology sheaf (by locus citatus). Similarly for the other
cohomology sheaves, i.e., $R\SheafHom_{\mathcal{O}_U}(\mathcal{O}_{U, f},
R\SheafHom_\mathcal{O}(K, L)|_U)$ is zero in $D(\mathcal{O}_U)$.
By Lemma \ref{lemma-hom-from-Af} we conclude.
\end{proof}
\begin{lemma}
\label{lemma-restriction-derived-complete}
Let $\mathcal{C}$ be a site. Let $\mathcal{O} \to \mathcal{O}'$
be a homomorphism of sheaves of rings. Let $\mathcal{I} \subset \mathcal{O}$
be a sheaf of ideals. The inverse image of $D_{comp}(\mathcal{O}, \mathcal{I})$
under the restriction functor $D(\mathcal{O}') \to D(\mathcal{O})$ is
$D_{comp}(\mathcal{O}', \mathcal{I}\mathcal{O}')$.
\end{lemma}
\begin{proof}
Using Lemma \ref{lemma-ideal-of-elements-complete-wrt}
we see that $K' \in D(\mathcal{O}')$ is in
$D_{comp}(\mathcal{O}', \mathcal{I}\mathcal{O}')$
if and only if $T(K'|_U, f)$ is zero for every local section
$f \in \mathcal{I}(U)$. Observe that the cohomology sheaves of
$T(K'|_U, f)$ are computed in the category of abelian sheaves,
so it doesn't matter whether we think of $f$ as a section of
$\mathcal{O}$ or take the image of $f$ as a section of $\mathcal{O}'$.
The lemma follows immediately from this and the
definition of derived complete objects.
\end{proof}
\begin{lemma}
\label{lemma-pushforward-derived-complete}
Let $f : (\Sh(\mathcal{D}), \mathcal{O}') \to (\Sh(\mathcal{C}), \mathcal{O})$
be a morphism of ringed topoi. Let $\mathcal{I} \subset \mathcal{O}$
and $\mathcal{I}' \subset \mathcal{O}'$ be sheaves of ideals such
that $f^\sharp$ sends $f^{-1}\mathcal{I}$ into $\mathcal{I}'$.
Then $Rf_*$ sends $D_{comp}(\mathcal{O}', \mathcal{I}')$
into $D_{comp}(\mathcal{O}, \mathcal{I})$.
\end{lemma}
\begin{proof}
We may assume $f$ is given by a morphism of ringed sites corresponding
to a continuous functor $\mathcal{C} \to \mathcal{D}$
(Modules on Sites, Lemma
\ref{sites-modules-lemma-morphism-ringed-topoi-comes-from-morphism-ringed-sites}
).
Let $U$ be an object of $\mathcal{C}$ and let $g$ be a section of
$\mathcal{I}$ over $U$. We have to show that
$\Hom_{D(\mathcal{O}_U)}(\mathcal{O}_{U, g}, Rf_*K|_U) = 0$
whenever $K$ is derived complete with respect to $\mathcal{I}'$.