forked from Shark-NLP/OpenICL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrand.py
278 lines (219 loc) · 9.38 KB
/
rand.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
# 不共享ice,随机样本作为ice
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer, GPT2Tokenizer, AutoModelForCausalLM, GPT2Model
import faiss
from typing import Dict
from transformers import pipeline
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
from torch.utils.data import Dataset
import evaluate
import torch
from datasets import load_dataset
import yaml
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
class ListDataset(Dataset):
def __init__(self, original_list):
self.original_list = original_list
def __len__(self):
return len(self.original_list)
def __getitem__(self, i):
return self.original_list[i]
def get_embeddings(corpus, model_name="all-mpnet-base-v2"):
model = SentenceTransformer(model_name)
embeddings = model.encode(corpus, show_progress_bar=True, convert_to_numpy=True)
return embeddings
def create_index(embeddings):
index = faiss.IndexFlatIP(768)
index.add(embeddings)
return index
def knn_search(index, corpus, ice_num=8):
print("Embedding search data...")
query_embeddings = get_embeddings(corpus)
_, neighbours = index.search(query_embeddings, ice_num)
return neighbours
def generate_item(template, dataset, ice_id, label_map: Dict, input_column="text", label_column="label"):
label = dataset[label_column][ice_id]
prompt = template.format(text=dataset[input_column][ice_id], verb=label_map[label])
return prompt
def generate_prompts(template, dataset: Dict, ice_ids, label_map: Dict, split="test", input_column="text", label_column="label"):
prompts = []
# construct a prompt for every test data point
for idx, neighbours in enumerate(tqdm(ice_ids)):
prompt = "\n".join([generate_item(template, dataset["train"], i, label_map, input_column, label_column) for i in neighbours]) + "\n"
prompt += template.format(text=dataset[split][input_column][idx], verb="")
prompts.append(prompt)
return prompts
def data(prompts):
for prompt in prompts:
yield prompt
def evaluate_result(outputs, labels):
metric = evaluate.load("accuracy")
results = metric.compute(references=labels, predictions=outputs)
return results
def inference1(model_name, prompts):
pipe = pipeline("text-generation", model=model_name, device="cuda", batch_size=8, return_full_text=False, max_length=500)
model = AutoModelForCausalLM.from_pretrained(model_name)
pipe.tokenizer.pad_token_id = model.config.eos_token_id
pipe.tokenizer.padding_side = "left"
dataset = ListDataset(prompts)
outputs = []
for out in tqdm(pipe(dataset, pad_token_id=pipe.tokenizer.eos_token_id)):
s = out[0]["generated_text"].split("\n")[0]
if s not in ["negative", "positive"]:
import pdb; pdb.set_trace()
outputs.append(s)
return outputs
# def rerank(ids):
# # this reranks the example order
# ice_num = ids.shape[-1]
# i, j = 0, ice_num - 1
# counter = 0
# permutation = np.zeros(ice_num).astype(int)
# while i < j:
# permutation[i] = counter
# counter += 1
# permutation[j] = counter
# counter += 1
# i += 1
# j -= 1
# if i == j:
# permutation[i] = counter
# permutation = np.arange(ice_num)[::-1]
# print("rerank permutation: ", permutation)
# ids = ids[:, permutation]
# return ids
def rerank(ids, similarity):
order = np.zeros_like(ids)
for i in range(ids.shape[0]):
neighbour = ids[i]
sim = similarity[i][neighbour]
index = np.argsort(sim) # 升序排列
index = index[::-1]
order[i] = neighbour[index]
# order[i] = index
return order
def inference(model_name, prompts, batch_size=8):
device = "cuda"
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
tokenizer.padding_side = "left"
model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
labels = []
print("len prompts: ", len(prompts))
num_batches = len(prompts) // batch_size if len(prompts) % batch_size == 0 else len(prompts) // batch_size + 1
for i in tqdm(range(num_batches)):
batch = prompts[i*batch_size: (i+1)*batch_size]
tokens = tokenizer(batch, return_tensors='pt', padding=True)
input_ids = tokens["input_ids"].to(device)
attention_mask = tokens["attention_mask"].to(device)
output = model.generate(input_ids=input_ids, attention_mask=attention_mask, max_new_tokens=1, pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id)
length = input_ids.shape[1]
output = output.detach().cpu().numpy()
pred = list(output[:, length])
label = [tokenizer.decode(p, skip_special_tokens=True) for p in pred]
labels.extend(label)
torch.cuda.empty_cache()
return labels
# for prompt in prompts:
# input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)
# output = model.generate(input_ids, max_new_tokens=1)
# generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
# prediction = generated_text.removeprefix(prompt)
# # print("Prompt: ", prompt)
# print("Prediction text: ", prediction)
# if prediction not in ["positive", "negative"]:
# import pdb; pdb.set_trace()
# tokenize prompts
# input_ids = tokenizer(prompts, return_tensors="pt", padding=True, max_length=None).to(device)
# output = model(**input_ids)
def random_neighbours(train, test, ice_num=8):
neighbours = np.zeros((test, ice_num), dtype=int)
fudge = np.random.choice(train, ice_num, replace=False)
for i in range(test):
neighbours[i] = np.random.choice(train, ice_num, replace=False)
return neighbours
def perm(ids):
# this reranks the example order
ice_num = ids.shape[-1]
i, j = 0, ice_num - 1
counter = 0
permutation = np.zeros(ice_num).astype(int)
while i < j:
permutation[i] = counter
counter += 1
permutation[j] = counter
counter += 1
i += 1
j -= 1
if i == j:
permutation[i] = counter
# permutation = np.arange(ice_num)[::-1]
print("rerank permutation: ", permutation)
ids = ids[:, permutation]
return ids
def perm1(ids):
# this reranks the example order
ice_num = ids.shape[-1]
i, j = 0, ice_num - 1
counter = ice_num - 1
permutation = np.zeros(ice_num).astype(int)
while i < j:
permutation[i] = counter
counter -= 1
permutation[j] = counter
counter -= 1
i += 1
j -= 1
if i == j:
permutation[i] = counter
# permutation = np.arange(ice_num)[::-1]
print("rerank permutation: ", permutation)
ids = ids[:, permutation]
return ids
def reverse_dict(d):
return {v: k for k, v in d.items()}
if __name__ == "__main__":
with open("config.yaml", "r") as f:
config = yaml.load(f, Loader=yaml.FullLoader)
print(config)
# Loading dataset from huggingface
dataset = load_dataset(config["dataset"])
train_corpus = dataset["train"]["text"]
test_corpus = dataset[config["split"]]["text"]
train_embeddings = get_embeddings(train_corpus)
test_embeddings = get_embeddings(test_corpus)
sim = cosine_similarity(train_embeddings, test_embeddings).T
print("similarity matrix shape: ", sim.shape)
neighbours = random_neighbours(len(train_corpus), len(test_corpus), config["ice_num"])
# neighbours = rerank(neighbours, sim)
# neighbours = perm(neighbours)
template = "Movie Review:{text}\nSentiment:{verb}"
label_map = config["label_map"]
map_label = reverse_dict(label_map)
prompts = generate_prompts(template, dataset, neighbours, label_map, config["split"], config["input_column"], config["output_column"])
print(prompts[:5])
# import pickle
# with open("icl_out.bin", "wb") as f:
# pickle.dump(neighbours, f)
predictions = inference(config["model"], prompts, batch_size=config["batch_size"])
pred = list(map(lambda x: map_label[x], predictions))
test_labels = dataset[config["split"]][config["output_column"]]
print(evaluate_result(pred, test_labels))
# print("相似度按我们的来")
# neighbours1 = perm(neighbours)
# prompts = generate_prompts(template, dataset, neighbours1, label_map, config["split"], config["input_column"], config["output_column"])
# predictions = inference(config["model"], prompts)
# pred = list(map(lambda x: map_label[x], predictions))
# test_labels = dataset[config["split"]][config["output_column"]]
# print(evaluate_result(pred, test_labels))
# print("相似度按我们的反着来")
# neighbours2 = perm1(neighbours)
# prompts = generate_prompts(template, dataset, neighbours2, label_map, config["split"], config["input_column"], config["output_column"])
# predictions = inference(config["model"], prompts)
# pred = list(map(lambda x: map_label[x], predictions))
# test_labels = dataset[config["split"]][config["output_column"]]
# print(evaluate_result(pred, test_labels))