forked from Shark-NLP/OpenICL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathembed.py
190 lines (144 loc) · 6.49 KB
/
embed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# KNN搜样本作为ice,test sample不共享ice
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer, GPT2Tokenizer, AutoModelForCausalLM, GPT2Model
import faiss
from typing import Dict
from transformers import pipeline
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
from torch.utils.data import Dataset
import evaluate
from datasets import load_dataset
import yaml
import numpy as np
class ListDataset(Dataset):
def __init__(self, original_list):
self.original_list = original_list
def __len__(self):
return len(self.original_list)
def __getitem__(self, i):
return self.original_list[i]
def get_embeddings(corpus, model_name="all-mpnet-base-v2"):
model = SentenceTransformer(model_name)
embeddings = model.encode(corpus, show_progress_bar=True, convert_to_numpy=True)
return embeddings
def create_index(embeddings):
index = faiss.IndexFlatIP(768)
index.add(embeddings)
return index
def knn_search(index, corpus, ice_num=8):
print("Embedding search data...")
query_embeddings = get_embeddings(corpus)
_, neighbours = index.search(query_embeddings, ice_num)
return neighbours
def generate_item(template, dataset, ice_id, label_map: Dict, input_column="text", label_column="label"):
label = dataset[label_column][ice_id]
prompt = template.format(text=dataset[input_column][ice_id], verb=label_map[label])
return prompt
def generate_prompts(template, dataset: Dict, ice_ids, label_map: Dict, split="test", input_column="text", label_column="label"):
prompts = []
# construct a prompt for every test data point
for idx, neighbours in enumerate(tqdm(ice_ids)):
prompt = "\n".join([generate_item(template, dataset["train"], i, label_map, input_column, label_column) for i in neighbours]) + "\n"
prompt += template.format(text=dataset[split][input_column][idx], verb="")
prompts.append(prompt)
return prompts
def data(prompts):
for prompt in prompts:
yield prompt
def evaluate_result(outputs, labels):
metric = evaluate.load("accuracy")
results = metric.compute(references=labels, predictions=outputs)
return results
def inference1(model_name, prompts):
pipe = pipeline("text-generation", model=model_name, device="cuda", batch_size=8, return_full_text=False, max_length=500)
model = AutoModelForCausalLM.from_pretrained(model_name)
pipe.tokenizer.pad_token_id = model.config.eos_token_id
pipe.tokenizer.padding_side = "left"
dataset = ListDataset(prompts)
outputs = []
for out in tqdm(pipe(dataset, pad_token_id=pipe.tokenizer.eos_token_id)):
s = out[0]["generated_text"].split("\n")[0]
if s not in ["negative", "positive"]:
import pdb; pdb.set_trace()
outputs.append(s)
return outputs
def rerank(ids):
# this reranks the example order
ice_num = ids.shape[-1]
i, j = 0, ice_num - 1
counter = 0
permutation = np.zeros(ice_num).astype(int)
while i < j:
permutation[i] = counter
counter += 1
permutation[j] = counter
counter += 1
i += 1
j -= 1
if i == j:
permutation[i] = counter
permutation = np.arange(ice_num)[::-1]
print("rerank permutation: ", permutation)
ids = ids[:, permutation]
return ids
def inference(model_name, prompts, batch_size=8):
device = "cuda"
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
tokenizer.padding_side = "left"
model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
labels = []
print("len prompts: ", len(prompts))
num_batches = len(prompts) // batch_size if len(prompts) % batch_size == 0 else len(prompts) // batch_size + 1
for i in tqdm(range(num_batches)):
batch = prompts[i*batch_size: (i+1)*batch_size]
tokens = tokenizer(batch, return_tensors='pt', padding=True)
input_ids = tokens["input_ids"].to(device)
attention_mask = tokens["attention_mask"].to(device)
output = model.generate(input_ids=input_ids, attention_mask=attention_mask, max_new_tokens=1, temperature=0.0, pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id)
length = input_ids.shape[1]
output = output.detach().cpu().numpy()
pred = list(output[:, length])
label = [tokenizer.decode(p, skip_special_tokens=True) for p in pred]
labels.extend(label)
return labels
# for prompt in prompts:
# input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)
# output = model.generate(input_ids, max_new_tokens=1)
# generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
# prediction = generated_text.removeprefix(prompt)
# # print("Prompt: ", prompt)
# print("Prediction text: ", prediction)
# if prediction not in ["positive", "negative"]:
# import pdb; pdb.set_trace()
# tokenize prompts
# input_ids = tokenizer(prompts, return_tensors="pt", padding=True, max_length=None).to(device)
# output = model(**input_ids)
def reverse_dict(d):
return {v: k for k, v in d.items()}
if __name__ == "__main__":
with open("config.yaml", "r") as f:
config = yaml.load(f, Loader=yaml.FullLoader)
print(config)
# Loading dataset from huggingface
dataset = load_dataset(config["dataset"])
train_corpus = dataset["train"]["text"]
test_corpus = dataset[config["split"]]["text"]
train_embeddings = get_embeddings(train_corpus)
index = create_index(train_embeddings)
neighbours = knn_search(index, test_corpus, config["ice_num"])
neighbours = rerank(neighbours)
template = "Movie Review:{text}\nSentiment:{verb}"
label_map = config["label_map"]
map_label = reverse_dict(label_map)
prompts = generate_prompts(template, dataset, neighbours, label_map, config["split"], config["input_column"], config["output_column"])
import pickle
with open("icl_out.bin", "wb") as f:
pickle.dump(neighbours, f)
predictions = inference(config["model"], prompts)
pred = list(map(lambda x: map_label[x], predictions))
test_labels = dataset[config["split"]][config["output_column"]]
print(evaluate_result(pred, test_labels))