forked from CSCfi/machine-learning-scripts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
valohai.yaml
150 lines (140 loc) · 4.87 KB
/
valohai.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
---
- step:
name: tensorflow-check
image: valohai/keras:2.1.3-tensorflow1.4.0-python3.5-cuda8.0-cudnn6-devel-ubuntu14.04
command:
- pwd
- lsb_release -a
- python --version
- python -c "import keras; print(keras.__version__);"
- python -c "import tensorflow; print(tensorflow.__version__);"
- python -c "from tensorflow.python.client import device_lib; device_lib.list_local_devices();"
- nvidia-smi
- nvcc --version | grep release
- cat /usr/include/x86_64-linux-gnu/cudnn_v*.h | grep CUDNN_MAJOR -A 2
- step:
name: keras-dvc-cnn-simple
image: valohai/keras:2.1.3-tensorflow1.4.0-python3.5-cuda8.0-cudnn6-devel-ubuntu14.04
command:
- tar -xf /valohai/inputs/dataset/*.tar -C /valohai/inputs/dataset/
- python valohai/keras-dvc-cnn-simple.py {parameters}
inputs:
- name: dataset
parameters:
- name: epochs
pass-as: --epochs={v}
type: integer
default: 20
- name: inference
pass-as: --inference={v}
type: integer
default: 0
- step:
name: keras-20ng-cnn
image: valohai/keras:2.1.3-tensorflow1.4.0-python3.5-cuda8.0-cudnn6-devel-ubuntu14.04
command:
- tar xf /valohai/inputs/dataset/glove6b100dtxt.tar.gz -C /valohai/inputs/dataset/
- tar xf /valohai/inputs/dataset/news20.tar.gz -C /valohai/inputs/dataset/
- python valohai/keras-20ng-cnn.py {parameters}
inputs:
- name: dataset
parameters:
- name: epochs
pass-as: --epochs={v}
type: integer
default: 20
- name: inference
pass-as: --inference={v}
type: integer
default: 1
- step:
name: keras-20ng-rnn
image: valohai/keras:2.1.3-tensorflow1.4.0-python3.5-cuda8.0-cudnn6-devel-ubuntu14.04
command:
- tar xf /valohai/inputs/dataset/glove6b100dtxt.tar.gz -C /valohai/inputs/dataset/
- tar xf /valohai/inputs/dataset/news20.tar.gz -C /valohai/inputs/dataset/
- python valohai/keras-20ng-rnn.py {parameters}
inputs:
- name: dataset
parameters:
- name: epochs
pass-as: --epochs={v}
type: integer
default: 20
- name: inference
pass-as: --inference={v}
type: integer
default: 1
- step:
name: keras-dvc-cnn-pretrained
image: valohai/keras:2.1.3-tensorflow1.4.0-python3.5-cuda8.0-cudnn6-devel-ubuntu14.04
command:
- tar xf /valohai/inputs/dataset/dogs-vs-cats.tar -C /valohai/inputs/dataset/
- python valohai/keras-dvc-cnn-pretrained.py {parameters}
inputs:
- name: dataset
default: https://object.pouta.csc.fi/swift/v1/AUTH_dac/mldata/dogs-vs-cats.tar
parameters:
- name: epochs
pass-as: --epochs={v}
type: integer
default: 10
- step:
name: keras-sfnet-cnn
image: valohai/keras:2.1.3-tensorflow1.4.0-python3.5-cuda8.0-cudnn6-devel-ubuntu14.04
command:
- tar xf /valohai/inputs/dataset/*.tar.gz -C /valohai/inputs/dataset/
- pip install tqdm
- python valohai/keras-sfnet-cnn.py {parameters}
inputs:
- name: dataset
default: https://object.pouta.csc.fi/swift/v1/AUTH_dac/mldata/sfnet2007-2008.tar.gz
- name: embedding
default: https://object.pouta.csc.fi/swift/v1/AUTH_dac/mldata/cc.fi.300.vec.gz
- step:
name: keras-sfnet-lstm
image: valohai/keras:2.1.3-tensorflow1.4.0-python3.5-cuda8.0-cudnn6-devel-ubuntu14.04
command:
- tar xf /valohai/inputs/dataset/*.tar.gz -C /valohai/inputs/dataset/
- pip install tqdm
- python valohai/keras-sfnet-lstm.py {parameters}
inputs:
- name: dataset
default: https://object.pouta.csc.fi/swift/v1/AUTH_dac/mldata/sfnet2007-2008.tar.gz
- name: embedding
default: https://object.pouta.csc.fi/swift/v1/AUTH_dac/mldata/cc.fi.300.vec.gz
- step:
name: pytorch_dvc_cnn_simple
image: nvcr.io/nvidia/pytorch:19.01-py3
command:
- nvidia-smi
- nvcc --version | grep release
- cat /usr/include/x86_64-linux-gnu/cudnn_v*.h | grep CUDNN_MAJOR -A 2
- pip install torchvision
- tar xf /valohai/inputs/dataset/dogs-vs-cats.tar -C /valohai/inputs/dataset/
- python valohai/pytorch_dvc_cnn_simple.py {parameters}
inputs:
- name: dataset
default: https://object.pouta.csc.fi/swift/v1/AUTH_dac/mldata/dogs-vs-cats.tar
parameters:
- name: test
pass-as: --test
optional: True
- endpoint:
name: predict-animal
image: ufoym/deepo:all-py36-cpu
wsgi: valohai.prediction_server:predict_wsgi
files:
- name: model
path: model.h5
- endpoint:
name: predict-nyyssi
image: ufoym/deepo:all-py36-cpu
wsgi: valohai.prediction_server_text:predict_wsgi
files:
- name: model
path: model.h5
- name: tokenizer
path: tokenizer_sfnet.pkl
- name: valohai-metadata.json
path: valohai-metadata.json