forked from hli1221/imagefusion_densefuse
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
148 lines (111 loc) · 3.96 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# Utility
import numpy as np
from os import listdir, mkdir, sep
from os.path import join, exists, splitext
from scipy.misc import imread, imsave, imresize
import skimage
import skimage.io
import skimage.transform
import tensorflow as tf
from PIL import Image
from functools import reduce
def list_images(directory):
images = []
dir = listdir(directory)
dir.sort()
for file in dir:
name = file.lower()
if name.endswith('.png'):
images.append(join(directory, file))
elif name.endswith('.jpg'):
images.append(join(directory, file))
elif name.endswith('.jpeg'):
images.append(join(directory, file))
elif name.endswith('.bmp'):
images.append(join(directory, file))
return images
# read images
def get_image(path, height=256, width=256, set_mode='L'):
image = imread(path, mode=set_mode)
if height is not None and width is not None:
image = imresize(image, [height, width], interp='nearest')
return image
def get_train_images(paths, resize_len=512, crop_height=256, crop_width=256, flag=True):
if isinstance(paths, str):
paths = [paths]
images = []
for path in paths:
image = get_image(path, height=crop_height, width=crop_width, set_mode='L')
if flag:
image = np.stack(image, axis=0)
image = np.stack((image, image, image), axis=-1)
else:
image = np.stack(image, axis=0)
image = image.reshape([crop_height, crop_width, 1])
images.append(image)
images = np.stack(images, axis=-1)
return images
def get_train_images_rgb(paths, crop_height=256, crop_width=256, flag=False):
if isinstance(paths, str):
paths = [paths]
images = []
for path in paths:
image = get_image(path, height=crop_height, width=crop_width, set_mode='RGB')
image = np.stack(image, axis=0)
images.append(image)
images = np.stack(images, axis=-1)
return images
def get_test_image_rgb(path, resize_len=512, crop_height=256, crop_width=256, flag = True):
# image = imread(path, mode='L')
image = imread(path, mode='RGB')
return image
def get_images_test(path, mod_type='L', height=None, width=None):
image = imread(path, mode=mod_type)
if height is not None and width is not None:
image = imresize(image, [height, width], interp='nearest')
if mod_type=='L':
d = image.shape
image = np.reshape(image, [d[0], d[1], 1])
return image
def get_images(paths, height=None, width=None):
if isinstance(paths, str):
paths = [paths]
images = []
for path in paths:
image = imread(path, mode='RGB')
if height is not None and width is not None:
image = imresize(image, [height, width], interp='nearest')
images.append(image)
images = np.stack(images, axis=0)
print('images shape gen:', images.shape)
return images
def save_images(paths, datas, save_path, prefix=None, suffix=None):
if isinstance(paths, str):
paths = [paths]
t1 = len(paths)
t2 = len(datas)
assert(len(paths) == len(datas))
if not exists(save_path):
mkdir(save_path)
if prefix is None:
prefix = ''
if suffix is None:
suffix = ''
for i, path in enumerate(paths):
data = datas[i]
# print('data ==>>\n', data)
if data.shape[2] == 1:
data = data.reshape([data.shape[0], data.shape[1]])
# print('data reshape==>>\n', data)
name, ext = splitext(path)
name = name.split(sep)[-1]
path = join(save_path, prefix + suffix + ext)
print('data path==>>', path)
# new_im = Image.fromarray(data)
# new_im.show()
imsave(path, data)
def get_l2_norm_loss(diffs):
shape = diffs.get_shape().as_list()
size = reduce(lambda x, y: x * y, shape) ** 2
sum_of_squared_diffs = tf.reduce_sum(tf.square(diffs))
return sum_of_squared_diffs / size