diff --git a/modelzoo/cifar10_nin.py b/modelzoo/cifar10_nin.py new file mode 100644 index 0000000..4bbb6b6 --- /dev/null +++ b/modelzoo/cifar10_nin.py @@ -0,0 +1,52 @@ +# Network in Network CIFAR10 Model +# Original source: https://gist.github.com/mavenlin/e56253735ef32c3c296d +# License: unknown + +# Download pretrained weights from: +# https://s3.amazonaws.com/lasagne/recipes/pretrained/cifar10/model.pkl + +from lasagne.layers import InputLayer, DropoutLayer, FlattenLayer +from lasagne.layers.dnn import Conv2DDNNLayer as ConvLayer +from lasagne.layers import Pool2DLayer as PoolLayer + + +def build_model(): + net = {} + net['input'] = InputLayer((None, 3, 32, 32)) + net['conv1'] = ConvLayer(net['input'], + num_filters=192, + filter_size=5, + pad=2) + net['cccp1'] = ConvLayer(net['conv1'], num_filters=160, filter_size=1) + net['cccp2'] = ConvLayer(net['cccp1'], num_filters=96, filter_size=1) + net['pool1'] = PoolLayer(net['cccp2'], + pool_size=3, + stride=2, + mode='max', + ignore_border=False) + net['drop3'] = DropoutLayer(net['pool1'], p=0.5) + net['conv2'] = ConvLayer(net['drop3'], + num_filters=192, + filter_size=5, + pad=2) + net['cccp3'] = ConvLayer(net['conv2'], num_filters=192, filter_size=1) + net['cccp4'] = ConvLayer(net['cccp3'], num_filters=192, filter_size=1) + net['pool2'] = PoolLayer(net['cccp4'], + pool_size=3, + stride=2, + mode='average_exc_pad', + ignore_border=False) + net['drop6'] = DropoutLayer(net['pool2'], p=0.5) + net['conv3'] = ConvLayer(net['drop6'], + num_filters=192, + filter_size=3, + pad=1) + net['cccp5'] = ConvLayer(net['conv3'], num_filters=192, filter_size=1) + net['cccp6'] = ConvLayer(net['cccp5'], num_filters=10, filter_size=1) + net['pool3'] = PoolLayer(net['cccp6'], + pool_size=8, + mode='average_exc_pad', + ignore_border=False) + net['output'] = FlattenLayer(net['pool3']) + + return net diff --git a/modelzoo/googlenet.py b/modelzoo/googlenet.py new file mode 100644 index 0000000..54342b6 --- /dev/null +++ b/modelzoo/googlenet.py @@ -0,0 +1,100 @@ +# BLVC Googlenet, model from the paper: +# "Going Deeper with Convolutions" +# Original source: +# https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet +# License: unrestricted use + +# Download pretrained weights from: +# https://s3.amazonaws.com/lasagne/recipes/pretrained/imagenet/blvc_googlenet.pkl + +from lasagne.layers import InputLayer +from lasagne.layers import DenseLayer +from lasagne.layers import ConcatLayer +from lasagne.layers import NonlinearityLayer +from lasagne.layers import GlobalPoolLayer +from lasagne.layers.dnn import Conv2DDNNLayer as ConvLayer +from lasagne.layers.dnn import MaxPool2DDNNLayer as PoolLayerDNN +from lasagne.layers import MaxPool2DLayer as PoolLayer +from lasagne.layers import LocalResponseNormalization2DLayer as LRNLayer +from lasagne.nonlinearities import softmax, linear + + +def build_inception_module(name, input_layer, nfilters): + # nfilters: (pool_proj, 1x1, 3x3_reduce, 3x3, 5x5_reduce, 5x5) + net = {} + net['pool'] = PoolLayerDNN(input_layer, pool_size=3, stride=1, pad=1) + net['pool_proj'] = ConvLayer(net['pool'], nfilters[0], 1) + + net['1x1'] = ConvLayer(input_layer, nfilters[1], 1) + + net['3x3_reduce'] = ConvLayer(input_layer, nfilters[2], 1) + net['3x3'] = ConvLayer(net['3x3_reduce'], nfilters[3], 3, pad=1) + + net['5x5_reduce'] = ConvLayer(input_layer, nfilters[4], 1) + net['5x5'] = ConvLayer(net['5x5_reduce'], nfilters[5], 5, pad=2) + + net['output'] = ConcatLayer([ + net['1x1'], + net['3x3'], + net['5x5'], + net['pool_proj'], + ]) + + return {'{}/{}'.format(name, k): v for k, v in net.items()} + + +def build_model(): + net = {} + net['input'] = InputLayer((None, 3, None, None)) + net['conv1/7x7_s2'] = ConvLayer(net['input'], 64, 7, stride=2, pad=3) + net['pool1/3x3_s2'] = PoolLayer(net['conv1/7x7_s2'], + pool_size=3, + stride=2, + ignore_border=False) + net['pool1/norm1'] = LRNLayer(net['pool1/3x3_s2'], alpha=0.00002, k=1) + net['conv2/3x3_reduce'] = ConvLayer(net['pool1/norm1'], 64, 1) + net['conv2/3x3'] = ConvLayer(net['conv2/3x3_reduce'], 192, 3, pad=1) + net['conv2/norm2'] = LRNLayer(net['conv2/3x3'], alpha=0.00002, k=1) + net['pool2/3x3_s2'] = PoolLayer(net['conv2/norm2'], pool_size=3, stride=2) + + net.update(build_inception_module('inception_3a', + net['pool2/3x3_s2'], + [32, 64, 96, 128, 16, 32])) + net.update(build_inception_module('inception_3b', + net['inception_3a/output'], + [64, 128, 128, 192, 32, 96])) + net['pool3/3x3_s2'] = PoolLayer(net['inception_3b/output'], + pool_size=3, stride=2) + + net.update(build_inception_module('inception_4a', + net['pool3/3x3_s2'], + [64, 192, 96, 208, 16, 48])) + net.update(build_inception_module('inception_4b', + net['inception_4a/output'], + [64, 160, 112, 224, 24, 64])) + net.update(build_inception_module('inception_4c', + net['inception_4b/output'], + [64, 128, 128, 256, 24, 64])) + net.update(build_inception_module('inception_4d', + net['inception_4c/output'], + [64, 112, 144, 288, 32, 64])) + net.update(build_inception_module('inception_4e', + net['inception_4d/output'], + [128, 256, 160, 320, 32, 128])) + net['pool4/3x3_s2'] = PoolLayer(net['inception_4e/output'], + pool_size=3, stride=2) + + net.update(build_inception_module('inception_5a', + net['pool4/3x3_s2'], + [128, 256, 160, 320, 32, 128])) + net.update(build_inception_module('inception_5b', + net['inception_5a/output'], + [128, 384, 192, 384, 48, 128])) + + net['pool5/7x7_s1'] = GlobalPoolLayer(net['inception_5b/output']) + net['loss3/classifier'] = DenseLayer(net['pool5/7x7_s1'], + num_units=1000, + nonlinearity=linear) + net['prob'] = NonlinearityLayer(net['loss3/classifier'], + nonlinearity=softmax) + return net diff --git a/modelzoo/vgg16.py b/modelzoo/vgg16.py new file mode 100644 index 0000000..660cb04 --- /dev/null +++ b/modelzoo/vgg16.py @@ -0,0 +1,41 @@ +# VGG-16, 16-layer model from the paper: +# "Very Deep Convolutional Networks for Large-Scale Image Recognition" +# Original source: https://gist.github.com/ksimonyan/211839e770f7b538e2d8 +# License: non-commercial use only + +# Download pretrained weights from: +# https://s3.amazonaws.com/lasagne/recipes/pretrained/imagenet/vgg16.pkl + +from lasagne.layers import InputLayer, DenseLayer, NonlinearityLayer +from lasagne.layers.dnn import Conv2DDNNLayer as ConvLayer +from lasagne.layers import Pool2DLayer as PoolLayer +from lasagne.nonlinearities import softmax + + +def build_model(): + net = {} + net['input'] = InputLayer((None, 3, 224, 224)) + net['conv1_1'] = ConvLayer(net['input'], 64, 3, pad=1) + net['conv1_2'] = ConvLayer(net['conv1_1'], 64, 3, pad=1) + net['pool1'] = PoolLayer(net['conv1_2'], 2) + net['conv2_1'] = ConvLayer(net['pool1'], 128, 3, pad=1) + net['conv2_2'] = ConvLayer(net['conv2_1'], 128, 3, pad=1) + net['pool2'] = PoolLayer(net['conv2_2'], 2) + net['conv3_1'] = ConvLayer(net['pool2'], 256, 3, pad=1) + net['conv3_2'] = ConvLayer(net['conv3_1'], 256, 3, pad=1) + net['conv3_3'] = ConvLayer(net['conv3_2'], 256, 3, pad=1) + net['pool3'] = PoolLayer(net['conv3_3'], 2) + net['conv4_1'] = ConvLayer(net['pool3'], 512, 3, pad=1) + net['conv4_2'] = ConvLayer(net['conv4_1'], 512, 3, pad=1) + net['conv4_3'] = ConvLayer(net['conv4_2'], 512, 3, pad=1) + net['pool4'] = PoolLayer(net['conv4_3'], 2) + net['conv5_1'] = ConvLayer(net['pool4'], 512, 3, pad=1) + net['conv5_2'] = ConvLayer(net['conv5_1'], 512, 3, pad=1) + net['conv5_3'] = ConvLayer(net['conv5_2'], 512, 3, pad=1) + net['pool5'] = PoolLayer(net['conv5_3'], 2) + net['fc6'] = DenseLayer(net['pool5'], num_units=4096) + net['fc7'] = DenseLayer(net['fc6'], num_units=4096) + net['fc8'] = DenseLayer(net['fc7'], num_units=1000, nonlinearity=None) + net['prob'] = NonlinearityLayer(net['fc8'], softmax) + + return net diff --git a/modelzoo/vgg19.py b/modelzoo/vgg19.py new file mode 100644 index 0000000..f13d91c --- /dev/null +++ b/modelzoo/vgg19.py @@ -0,0 +1,44 @@ +# VGG-19, 19-layer model from the paper: +# "Very Deep Convolutional Networks for Large-Scale Image Recognition" +# Original source: https://gist.github.com/ksimonyan/3785162f95cd2d5fee77 +# License: non-commercial use only + +# Download pretrained weights from: +# https://s3.amazonaws.com/lasagne/recipes/pretrained/imagenet/vgg19.pkl + +from lasagne.layers import InputLayer, DenseLayer, NonlinearityLayer +from lasagne.layers.dnn import Conv2DDNNLayer as ConvLayer +from lasagne.layers import Pool2DLayer as PoolLayer +from lasagne.nonlinearities import softmax + + +def build_model(): + net = {} + net['input'] = InputLayer((None, 3, 224, 224)) + net['conv1_1'] = ConvLayer(net['input'], 64, 3, pad=1) + net['conv1_2'] = ConvLayer(net['conv1_1'], 64, 3, pad=1) + net['pool1'] = PoolLayer(net['conv1_2'], 2) + net['conv2_1'] = ConvLayer(net['pool1'], 128, 3, pad=1) + net['conv2_2'] = ConvLayer(net['conv2_1'], 128, 3, pad=1) + net['pool2'] = PoolLayer(net['conv2_2'], 2) + net['conv3_1'] = ConvLayer(net['pool2'], 256, 3, pad=1) + net['conv3_2'] = ConvLayer(net['conv3_1'], 256, 3, pad=1) + net['conv3_3'] = ConvLayer(net['conv3_2'], 256, 3, pad=1) + net['conv3_4'] = ConvLayer(net['conv3_3'], 256, 3, pad=1) + net['pool3'] = PoolLayer(net['conv3_4'], 2) + net['conv4_1'] = ConvLayer(net['pool3'], 512, 3, pad=1) + net['conv4_2'] = ConvLayer(net['conv4_1'], 512, 3, pad=1) + net['conv4_3'] = ConvLayer(net['conv4_2'], 512, 3, pad=1) + net['conv4_4'] = ConvLayer(net['conv4_3'], 512, 3, pad=1) + net['pool4'] = PoolLayer(net['conv4_4'], 2) + net['conv5_1'] = ConvLayer(net['pool4'], 512, 3, pad=1) + net['conv5_2'] = ConvLayer(net['conv5_1'], 512, 3, pad=1) + net['conv5_3'] = ConvLayer(net['conv5_2'], 512, 3, pad=1) + net['conv5_4'] = ConvLayer(net['conv5_3'], 512, 3, pad=1) + net['pool5'] = PoolLayer(net['conv5_4'], 2) + net['fc6'] = DenseLayer(net['pool5'], num_units=4096) + net['fc7'] = DenseLayer(net['fc6'], num_units=4096) + net['fc8'] = DenseLayer(net['fc7'], num_units=1000, nonlinearity=None) + net['prob'] = NonlinearityLayer(net['fc8'], softmax) + + return net