-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathfir_qprog_phs.m
400 lines (349 loc) · 12.3 KB
/
fir_qprog_phs.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
function [h, status] = fir_qprog_phs(n, f, ac, dc, x0, dbg)
% FIR_QPROG_PHS - FIR filter design using quadratic programming
%
% Design n-tap linear-phase filter that meets multiband frequency specification,
% including nominal phase in each band.
%
% function [h, status] = fir_qprog_phs(n, f, a, d, dbg)
%
% Inputs: --- similar to cfirpm
% n: number of taps returned
% f: frequency bands (-1->1)
% a: amplitude for each band - complex NOTE: does NOT support sloped
% bands
% - magnitude describes target magnitude for band
% - phase describes target phase for band
% d: ripple in bands - complex
% - magnitude describes +/- magnitude ripple for band
% - phase describes +/- phase ripple for band
% dbg: flag to turn on debugging statements/plots
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Spectral-Spatial RF Pulse Design for MRI and MRSI MATLAB Package
%
% Authors: Adam B. Kerr and Peder E. Z. Larson
%
% (c)2007-2013 Board of Trustees, Leland Stanford Junior University and
% The Regents of the University of California.
% All Rights Reserved.
%
% Please see the Copyright_Information and README files included with this
% package. All works derived from this package must be properly cited.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% $Header: /home/adam/cvsroot/src/ss/fir_qprog_phs.m,v 1.6 2013/08/15 03:18:58 adam Exp $
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Default value for dbg
%
if nargin < 6,
dbg = 0;
end;
% Find how many bands
%
nband = length(f)/2;
% Make sure specification doesn't include sloped bands
%
for band = 1:nband,
if (ac(band*2-1) ~= ac(band*2))
error('Does not support sloped bands');
end
end
% Decimate ac so it is just nband elements
%
a = ac(1:2:end);
% Get magnitudes / phase
a = abs(a);
aphs = angle(a);
d = abs(dc);
dphs = angle(dc);
% Check input parameters, informing user that any stopband (e.g. a
% band where magnitude + ripple specs straddle 0 cannot have a
% phase target or ripple associated with it)
%
for band = 1:nband
if ((a(band) + d(band)) * (a(band) - d(band)) < 0)
if (a(band) ~= 0) || (dphs(band) ~= 0)
error('Bands straddling 0 must have a = 0, angle(d) = 0');
end
end
end
% Check phase spec / magnitudes to see if approximation of concave
% surface by linear segment is imposing too much error
%
err_tol = 0.05;
for band = 1:nband
bandwarn = 0;
if a(band) ~= 0
magerr_inner = (a(band) - d(band)) * (sec(dphs(band)) - 1);
if (magerr_inner >= 2 * d(band))
warning('Reducing phase ripple to that feasible');
dphs(band) = 0.99*acos((a(band) - d(band)) / (a(band)+d(band)));
elseif ((magerr_inner > err_tol * 2 * d(band)) && (dbg > 0))
warning(sprintf(['Band: %d, Linear approximation to magnitude spec ' ...
'decreasing mag ripple by %3.1f%%'], band, 100*magerr_inner/(2*d(band))));
end
end
end
% Work out phases of endpoints to use for upper magnitude piecewise
% linear segments approximation
%
n_phs_tran = ceil(2 * pi / acos(1-err_tol));
amax = max(a + d); % Max magnitude for filter
phs_tran = [0:n_phs_tran]/n_phs_tran * 2 * pi;
for band = 1:nband
if (a(band) == 0)
phs_band{band} = [0:n_phs_tran]/n_phs_tran * 2 * pi;
else
phs_tol = acos(1 - (err_tol * 2 * d(band)));
n_phs = ceil(2 * dphs(band) / phs_tol);
phs_band{band} = ([0:n_phs]/n_phs * 2 - 1) * dphs(band) + ...
aphs(band);
% Add phase points from each band to transition band pwl segments
% if band is near max magnitude
%
if ( (a(band) + d(band)) >= amax * (1-err_tol) )
phs_tran = [phs_tran (aphs(band)-dphs(band)) (aphs(band)+ ...
dphs(band))];
end
end
end
% Prune and sort phase points in phs_tran
%
phs_tran = mod(phs_tran, 2 * pi);
phs_tran = unique([phs_tran 0 2*pi]); % Between 0 and 2pi
% Plot PWL segments for debug purposes
%
if (dbg > 0)
figure;
plot([0 (1+i)*1e-9]);
hold on;
% Plot transition limits first
%
tran_pts = amax * exp(i*phs_tran);
plot(tran_pts,'k--');
% Now plot bands
%
band_cmap = jet(nband);
for band = 1:nband
% Plot ideal magnitude specs
if a(band) ~= 0,
phs = aphs(band) + (([0:50]/50) * 2 - 1) * angle(dc(band));
else
phs = aphs(band) + (([0:50]/50) * 2 - 1) * pi;
end
plot((a(band)+d(band)) * exp(i*phs), '--',...
'Color', band_cmap(band,:));
plot((a(band)-d(band)) * exp(i*phs), '--',...
'Color', band_cmap(band,:));
% Upper magnitude is PWL approximation
%
plot((a(band)+d(band)) * exp(i*phs_band{band}), ...
'Color', band_cmap(band,:));
% Lower magnitude is single line
%
if (a(band) ~= 0)
pts_real = (a(band) - d(band)) * ones(1,51);
phs = (([0:50]/50) * 2 - 1) * dphs(band);
pts_imag = (a(band) - d(band)) * tan(phs);
pts = (pts_real + i *pts_imag) * exp(i*aphs(band));
plot(pts, 'Color', band_cmap(band,:));
end
end
drawnow;
end
% Scale f to -pi .. pi
%
f = f * pi;
% Determine if filter has odd or even number of
% taps
%
if (bitget(n,1) == 1)
odd_filter = 1;
else
odd_filter = 0;
end;
% If the frequency specification has a non-zero point
% at +/- pi, then the order must be even. A warning is
% printed and a failure returned if this is the case.
%
if (~odd_filter)
idx = find(abs(f) == pi);
if find(abs(ac(idx)) ~= 0)
warning('n odd and frequency spec non-zero at fs/2');
status = 'Failed';
h = [];
return;
end;
end;
% Determine number of optimization parameters
%
nhalf = ceil(n/2); % number of taps in half-side of
% filter
nx = 2 * n; % Number of optimization parameters
% Create optimization arrays
%
oversamp = 15;
undersamp_tran = 1; % Undersampling factor for transition
% regions
% Get first pass on w
%
m = 2 * oversamp * n;
w = linspace(-pi,pi,m);
% Add explicit samples to w at the edge of each specified band
%
w = sort([w f]);
% Create W matrix representing DFT
%
if (odd_filter)
W = exp (-i* kron(w', [-(nhalf-1):nhalf-1]));
else
W = exp (-i* kron(w', [-nhalf:nhalf-1]+0.5));
end
% Find indices to passbands/stopbands, and fill in upper/lower bounds
%
idx_band = [];
Au = []; Bu = [];
Al = []; Bl = [];
for band = 1:nband,
idx = find( (w >= f(band*2-1)) & (w <= f(band*2)) );
idx_band = [idx_band idx];
% Build up upper magnitude constraints
%
phs_diff = angle(exp(i*phs_band{band}(2)) * ...
exp(-i*phs_band{band}(1)));
a_mid = (a(band) + d(band)) * cos(phs_diff/2);
for phs_idx = 1:(length(phs_band{band})-1)
phs_mid = phs_band{band}(phs_idx) + phs_diff/2;
Wtmp = W(idx,:) * exp(-i*phs_mid);
Au = [Au; real(Wtmp) -imag(Wtmp)]; % in-phase part of Wtmp * x
Bu = [Bu; a_mid * ones(length(idx),1)];
end
% Build lower magnitude constraint for non-stopbands
%
if (a(band) ~= 0)
Wtmp = W(idx,:) * exp(-i*aphs(band));
Al = [Al; real(Wtmp) -imag(Wtmp)]; % in-phase part of Wtmp * x
Bl = [Bl; (a(band)-d(band)) * ones(length(idx),1)];
% Build upper phase constraint
%
Wtmp = W(idx,:) * exp(-i*phs_band{band}(end));
Au = [Au; imag(Wtmp) real(Wtmp)]; % quadrature part of Wtmp * x
Bu = [Bu; zeros(length(idx),1)];
% Build lower phase constraint
%
Wtmp = W(idx,:) * exp(-i*phs_band{band}(1));
Al = [Al; imag(Wtmp) real(Wtmp)]; % quadrature part of Wtmp * x
Bl = [Bl; zeros(length(idx),1)];
end
end
% Get transition indices
%
idx_tmp = ones(1,length(w));
idx_tmp(idx_band) = 0;
idx_tran = find(idx_tmp == 1);
% Decimate w in transition regions
%
idx_tran = idx_tran(1:undersamp_tran:end);
% Find weighting
%
wband_mtx = w(idx_band)' * ones(1,length(idx_tran));
w_mtx = ones(length(idx_band),1) * w(idx_tran);
dtmp = abs(angle(exp(i*(wband_mtx - w_mtx))));
dtmp = min(dtmp);
wt_tran_energy = min(4*pi/n, dtmp) / (4*pi/n);
if dbg >= 3,
figure;
hold on;
plot(w(idx_band),ones(length(idx_band),1),'*');
plot(w(idx_tran), wt_tran_energy, 'g+');
drawnow;
end;
% Build up transition band magnitude constraints
%
limit_tran = 1;
if limit_tran
for idx = 1:(length(phs_tran)-1)
phs_diff = phs_tran(idx+1)-phs_tran(idx);
phs_mid = phs_tran(idx)+phs_diff/2;
Wtmp = W(idx_tran,:) * exp(-i*phs_mid);
Au = [Au; real(Wtmp) -imag(Wtmp)]; % in-phase part of Wtmp * x
Bu = [Bu; amax * cos(phs_diff/2) * ones(length(idx_tran),1)];
end
end
% Combine matrices
%
A = [Au; -Al];
B = [Bu; -Bl];
% Build matrix H to minimize energy of filter
%
minimize_total_energy = 1;
if minimize_total_energy
H = eye(nx); % Minimize total energy
H = sparse(H);
else
Ar_tran = [real(W(idx_tran,:)) -imag(W(idx_tran,:))];
Ai_tran = [imag(W(idx_tran,:)) real(W(idx_tran,:))];
Ari_tran = diag([sqrt(wt_tran_energy) sqrt(wt_tran_energy)]) * [Ar_tran; Ai_tran];
H = Ari_tran' * Ari_tran;
end
fmin = zeros(1,nx);
% Call minimization routine
%
x0 = [];
[x,fval,exitflag,output] = ...
quadprog(H, fmin, A, B, [],[],[],[],x0,...
optimset('Algorithm', 'interior-point-convex', ...
'Display','off'));
% optimset('Algorithm', 'active-set', 'Display','iter', ...
% 'MaxIter', 500));
% exitflag
if dbg >= 2,
fprintf(1,'Exitflag: %d\n', exitflag);
switch(exitflag)
case 1
fprintf(1,'First order optimality conditions satisfied\n');
case 0
fprintf(1,'Maximum number of iterations exceeded\n');
case -2
fprintf(1,'No feasible point found\n');
case -3
fprintf(1,'Problem is unbounded\n');
case -6
fprintf(1,'Non-convex problem detected\n');
case 3
fprintf(1,'Change in objective function too small\n');
case -4
fprintf(1,['Current search direction is not a descent direction; ' ...
'no further progress can be made.\n']);
case 4
fprintf(1,'Local minimizer found\n');
case -7
fprintf(1,['Magnitude of search direction became too small; no ' ...
'further progress can be made. The problem is ill-posed ' ...
'or badly conditioned.\n']);
otherwise
fprintf(1,'Exitflag not recognized\n');
end
h = x(1:n) + i * x(n+1:end);
H = W * h;
[wsort, sidx] = sort(w);
hsort = H(sidx);
figure;
plot_spec_phs(f,ac,dc,wsort,hsort);
title('Frequency response calculated with W');
figure;
plot(abs(h));
drawnow;
end;
if (exitflag == 1) % feasible
h = x(1:n) + i * x(n+1:end);
status = 'Solved';
else
h = [];
status = 'Failed';
end;
return;