-
Notifications
You must be signed in to change notification settings - Fork 19
/
fir_pm_minpow.m
384 lines (351 loc) · 9.7 KB
/
fir_pm_minpow.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
function [h, status] = fir_pm_minpow(n, f, a, d, a_min, dbg)
% FIR_PM_MINPOW - FIR filter design using Parks-McLellan algs,
% with attempt to minimize power
%
% Design n-tap linear-phase filter that meets multiband frequency
% specification.
%
% function [h, status] = fir_pm_minpow(n, f, a, d, a_min, dbg)
%
% Inputs:
% n: number of taps returned
% f: frequency bands
% a: amplitude at band edges
% d: ripple in bands
% a_min: if not present or [], chooses min(0, min(a-d))
% dbg: flag to turn on debugging statements/plots
%
% First designs filter with PM algorithm, then uses result as
% a seed for the fir_linprog routine. fir_linprog() includes
% a minimimization of the sum transition band response---which
% is equal to power when operating on an autocorrelation filter
% since the frequency response is the power spectrum (real and all
% positive). When operating on the amplitude response, the
% transition frequency response can both be negative and is
% only proportional to the sqrt(power), so care should be taken
% when using it in this manner.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Spectral-Spatial RF Pulse Design for MRI and MRSI MATLAB Package
%
% Authors: Adam B. Kerr and Peder E. Z. Larson
%
% (c)2007-2011 Board of Trustees, Leland Stanford Junior University and
% The Regents of the University of California.
% All Rights Reserved.
%
% Please see the Copyright_Information and README files included with this
% package. All works derived from this package must be properly cited.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% $Header: /home/adam/cvsroot/src/ss/fir_pm_minpow.m,v 1.6 2012/02/01 00:41:22 peder Exp $
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Default value for a_min
%
d2 = [d(:).'; d(:).'];
d2 = d2(:).';
if (nargin < 5) || isempty(a_min),
a_min = min(0,min(a-d2));
end;
% Default value for dbg
%
if nargin < 6,
dbg = 0;
end;
% Determine if real or complex coefficients
%
f = f * pi; % Scale to +/- pi
if min(f) < 0,
real_filter = 0;
else
real_filter = 1;
end;
% Determine if filter has odd or even number of
% taps
%
if (bitget(n,1) == 1)
odd_filter = 1;
else
odd_filter = 0;
end;
% If the frequency specification has a non-zero point
% at +/- 1, then the order must be even. A warning is
% printed and a failure returned if this is the case.
%
if (~odd_filter)
idx = find(abs(f) ~= 0);
if find(a(idx) ~= 0)
warning('n odd and frequency spec non-zero at fs/2');
status = 'Failed';
h = [];
return;
end;
end;
% Oversampling on frequency to determine transition bands
%
oversamp = 16;
% Get first pass on w
%
if real_filter,
m = oversamp * n;
w = linspace(0,pi,m);
else
m = 2 * oversamp * n;
w = linspace(-pi,pi,m);
end;
% Find bounds on transition regions and convert to amp/ripple
%
ub_tran = max(a + d2);
lb_tran = a_min; % Set to min amplitude spec
amp_tran = (ub_tran + lb_tran)/2;
ripple_tran = (ub_tran - lb_tran)/2;
% Find indices of transition bands, build up new frequency spec
%
nband = length(f)/2;
ntran = nband+1;
fn = [];
an = [];
dn = [];
for tran = 1:ntran,
if tran == 1,
f_l = min(w); % This avoids sample at -pi
rband = tran;
f_r = f(rband*2-1);
elseif tran == ntran,
lband = tran-1;
f_l = f(lband*2);
f_r = pi; % This avoids sample at pi
else
lband = tran-1;
f_l = f(lband*2);
rband = tran;
f_r = f(rband*2-1);
end;
idx_tran = find((w > f_l) & (w < f_r));
% cfirpm seems to choke sometimes---I hypothesize
% this is because the transition edges are too
% close to the actual passbands, so don't take
% the immediately adjacent points
%
nskip = 1;
if length(idx_tran) <= 1+2*nskip,
f_tran = [];
a_tran = [];
d_tran = [];
else
idx_tran = idx_tran(1+nskip:end-nskip);
f_tran = [min(w(idx_tran)) max(w(idx_tran))];
a_tran = [amp_tran amp_tran];
d_tran = [ripple_tran];
end;
fn = [fn f_tran];
an = [an a_tran];
dn = [dn d_tran];
if tran < ntran,
fn = [fn f(tran*2-1) f(tran*2)];
an = [an a(tran*2-1) a(tran*2)];
dn = [dn d(tran)];
end;
end;
% Determine error weights, then call firpm
%
wt = max(dn) ./ dn;
lgrid = 31; % Oversample, default 25
try
[h,d_opt,opt] = cfirpm(n-1,fn/pi,an,wt,{lgrid});
catch
h = [];
lsterr = lasterror;
fprintf(1,'Error caught in cfirpm: \n');
fprintf(1,'%s\n', lsterr.message);
end;
% Check frequency response at extremal frequencies
% that are within specified bands
%
resp_ok = 0;
if ~isempty(h)
resp_ok = check_response(fn/pi, an, dn, opt.fgrid, abs(opt.H));
end;
if (~resp_ok)
status = 'Failed';
h = [];
return;
end;
% Now call fir_linprog with designed filter as starting point.
% The frequency response of the returned filter will be used
% to refine our transition bands.
if (dbg)
fprintf(1,'Getting linear filter based on PM design\n');
end;
hlin = fir_linprog(n, f/pi, a, d, h(:), dbg);
Hlin = freqz(hlin,1,w/pi,2);
% Update transition bands
%
fn = [];
an = [];
dn = [];
for tran = 1:ntran,
if tran == 1,
f_l = min(w); % This avoids sample at -pi,0
rband = tran;
f_r = f(rband*2-1);
elseif tran == ntran,
lband = tran-1;
f_l = f(lband*2);
f_r = pi; % This avoids sample at pi
else
lband = tran-1;
f_l = f(lband*2);
rband = tran;
f_r = f(rband*2-1);
end;
idx_tran = find((w > f_l) & (w < f_r));
% Break up this transition region into bands
% each with a max bound determined by the Hlin
% filter response
%
% cfirpm seems to choke sometimes---I hypothesize
% this is because bands are too close together, so
% keep at least "nskip" points between neighbours
%
nskip = 1;
ntran_pts = oversamp*2;
ntran_region = max(1,round((length(idx_tran)-nskip)/ntran_pts));
ntran_pts = (length(idx_tran)-nskip)/ntran_region;
idx_region_st = nskip + 1 + round([0:ntran_region-1]*ntran_pts);
idx_region_end = [idx_region_st(2:end) (length(idx_tran)-nskip+1)]-1;
for reg = 1:length(idx_region_st)
% Get frequency indices corresponding to this region
%
idx_tran_reg = idx_tran(idx_region_st(reg):idx_region_end(reg));
if length(idx_tran_reg) == 0,
f_tran = [];
a_tran = [];
d_tran = [];
else
f_tran = [min(w(idx_tran_reg)) max(w(idx_tran_reg))];
max_H = max(abs(Hlin(idx_tran_reg))); % Phase not removed
% from Hlin
tol_H = 0.01;
max_H = max_H + tol_H*max(a+d2); % Add some tolerance to bands
max_H = max(min(a+d2), max_H); % No tighter than stopband
min_H = a_min;
amp_tran = (max_H + min_H)/2;
ripple_tran = (max_H - min_H)/2;
a_tran = [amp_tran amp_tran];
d_tran = [ripple_tran];
end;
fn = [fn f_tran];
an = [an a_tran];
dn = [dn d_tran];
end;
if tran < ntran,
fn = [fn f(tran*2-1) f(tran*2)];
an = [an a(tran*2-1) a(tran*2)];
dn = [dn d(tran)];
end;
end;
% Plot new frequency specfication on top of linear filter response
%
if (dbg >= 2)
figure;
plot(w/pi, abs(Hlin));
hold on;
plot(opt.fgrid, abs(opt.H),'r');
nband = length(fn)/2;
for band = 1:nband,
idx = [band*2-1:band*2];
plot(fn(idx)/pi, an(idx)+dn(band), 'g--');
plot(fn(idx)/pi, an(idx)-dn(band), 'g--');
end;
nband = length(f)/2;
for band = 1:nband,
idx = [band*2-1:band*2];
plot(f(idx)/pi, a(idx)+d(band), 'k--');
plot(f(idx)/pi, a(idx)-d(band), 'k--');
end;
fprintf(1,'Pausing...\n');
pause;
end;
% Determine error weights, then call firpm
%
wt = max(dn) ./ dn;
lgrid = 31; % Oversample, default 25
try
[h,d_opt,opt] = cfirpm(n-1,fn/pi,an,wt,{lgrid});
catch
h = [];
lsterr = lasterror;
fprintf(1,'Error caught in cfirpm: \n');
fprintf(1,'%s\n', lsterr.message);
end;
if (dbg >= 2)
plot(opt.fgrid, abs(opt.H),'m');
fprintf(1,'Pausing...\n');
pause;
end;
% Check frequency response at extremal frequencies
% that they are within specified bands
%
resp_ok = 0;
if ~isempty(h)
resp_ok = check_response(fn/pi, an, dn, opt.fgrid, abs(opt.H));
end;
if (~resp_ok)
fprintf(1,'*** Failed to get min energy pulse ***\n');
status = 'Failed';
h = [];
return;
else
if dbg>=2,
plot_response(opt.fgrid, opt.H, fn/pi, an, dn);
title('Filter Response');
pause(1);
end;
h = h(:);
status = 'Solved';
end;
return;
function status = check_response(f,a,d,ftest,htest)
% CHECK_RESPONSE - Check magnitude response to see if it meets specs
%
nband = length(f)/2;
status = 1;
for band = 1:nband,
idx = find((ftest >= f(band*2-1)) & (ftest <= f(band*2)));
if isempty(idx)
break;
end;
f_off = ftest(idx) - f(band*2-1);
a_test = a(band*2-1) + ...
(a(band*2)-a(band*2-1)) * f_off/(f(band*2)-f(band*2-1));
a_hi = a_test + d(band);
a_lo = a_test - d(band);
if (find((htest(idx) > a_hi) | (htest(idx) < a_lo)))
status = 0; % Fails in at least one sample
return;
end;
end;
return;
function plot_response (freq,h,f,a,d)
% plot_response - Plot frequency specification and actual response
%
figure;
hold on;
nband = length(f)/2;
for band = 1:nband,
idx = [band*2-1:band*2];
plot(f(idx), a(idx)+d(band), 'k--');
if max(a(idx)-d(band)) > 0,
plot(f(idx), max(0,a(idx)-d(band)), 'k--');
end;
end;
plot(freq, real(h));
plot(freq, imag(h),'b--');
xlabel('Frequency');
ylabel('Filter Response');
return;